DNO COMMON NETWORK ASSET INDICES METHODOLOGY

01/09/2020 Health & Criticality - Version 2.0 Draft

A common framework of definitions, principles and calculation methodologies, adopted across all GB Distribution Network Operators, for the assessment, forecasting and regulatory reporting of Asset Risk.

Version No.	Date	Description	Outcome
Draft v3	01/07/2015	Formal Draft Submission to Ofgem	Ofgem Direction requesting changes received 23/10/2015
Draft v4	15/12/2015	Draft amended as instructed	Approved by Ofgem on 01/02/2016
v1.0	01/08/2016	For consultation in accordance with SLC 51 Part I	Implemented for December 2016 NAW and SDRP submissions
v1.1	30/01/2017	For consultation in accordance with SLC 51 Part I – Revision to Oil Filled Cable PoF and Steel Tower PoF & Network Performance CoF	Approved by Ofgem in May 2017 for use during RIIO-ED1 April 2015 – March 2023
v2.0	01/09/2020	For consultation on draft proposed changes for RIIO-ED2 period and beyond incorporating Long Term Risk	

VERSION CONTROL

The Common Network Asset Indices Methodology is subject to approval by Ofgem for the regulatory period to which it applies. Any changes made to the methodology must be directed by Ofgem and recorded in the table above.

ACKNOWLEDGEMENTS

This version of the Common Network Asset Indices Methodology has been compiled by a dedicated Working Group comprising representatives from all six GB DNO Groups and NIE Networks:

- Bob Wells (Electricity North West Limited)
- Kyle Taylor (Northern Ireland Electricity Networks)
- Gavin Howarth (Northern Powergrid)
- Ian Reed (Northern Powergrid)
- Matthew Jones (SP Energy Networks)
- ShengJi Tee (SP Energy Networks)
- Jason Chapman (Scottish and Southern Electricity Networks)
- Landel Johnston (Scottish and Southern Electricity Networks) Working Group Chair
- Chee Lee (UK Power Networks)
- Max Taylor (UK Power Networks)
- Phil Mann (Western Power Distribution)

The Working Group has been informed by Ofgem's Safety, Resilience and Reliability Working Group (SRRWG) for RIIO-ED2 development.

PURPOSE OF DOCUMENT

This document sets out a common methodology for assessing condition-based risk for electricity distribution assets. It has been developed by all six GB DNO groups and NIE Networks to meet the regulatory requirements for Network Asset Risk Metrics for RIIO-ED2 (1 April 2023 to 31 March 2028).

The document sets out the overall process for assessing condition-based risk and specifies the parameters, values and conditions to be used. The collective outputs of the assessment, used for regulatory reporting purposes, are known as the Network Asset Indices under the Common Network Asset Indices Methodology. The methodology requires approval from Ofgem and can be amended subject to an agreed change process.

When approved by Ofgem, this methodology will require DNOs to re-align their current processes and practices to this new standard.

Once implemented, DNOs will be required to report annually against the targets set using the methodology to calculate the changes achieved. These reporting requirements are set down in the RIIO-ED2 Regulatory Instructions and Guidance (RIGs).

Contents

VERSI	ION CONTROL	. 2
ACKN	OWLEDGEMENTS	. 2
PURP	OSE OF DOCUMENT	. 3
1. Gl	LOSSARY	10
2. AC	CRONYMS	12
 IN 3.1 3.2 3.3 3.4 3.5 	TRODUCTION Network Asset Indices Methodology Objectives. Asset Health and Probability of Failure Consequences of Failure and Asset Criticality. Regulatory Reporting of Network Asset Indices Hierarchy of Asset Categories	14 15 15 15
4. 0 4.1 4.2 4.3	VERVIEW OF COMMON NETWORK ASSET INDICES METHODOLOGY Key Outputs Definition of Failure Evaluation of Current Asset Health and Probability of Failure	21 22
4.4 4.5 4.6	Evaluation of Future Asset Health and Probability of Failure Evaluation of Consequences of Failure Assimilating innovation in operation and maintenance	25 26
5. RI 5.1 5.2 5.3 5.4 5.5	SK. Overview Risk Evaluation Representation of Assets Within Risk Matrices Evaluating In-Year Risk Using Risk Matrices Evaluating Long Term Risk Using Risk Matrices	28 28 28 30
6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11	ROBABILITY OF FAILURE PoF Calculation (General) PoF Calculation (HV, EHV and 132kV Transformers) PoF Calculation (Steel Towers) Location Factor (General) Location Factor (Submarine Cables) Duty Factor Health Score Modifier Health Score Modifier for HV, EHV and 132kV Transformers Observed Condition Modifier Oil Test Modifier DGA Test Modifier	 34 41 43 46 48 51 52 57 59 64 68
6.13 6.14	DGA Test Modifier FFA Test Modifier Reliability Modifier ONSEQUENCES OF FAILURE	71 73

7.1	Overview	75
7.2	Reference Costs of Failure	77
7.3	Financial Consequences	79
7.4	Safety Consequences	80
7.5	Environmental Consequences	
7.6	Network Performance Consequences	
8. R	EFERENCES	
8.1	A Note on Referencing	94
8.2	Reference to Internal Working Group Agreement	94
8.3	Table Reference Breakdown	94
8.4	Document References	97
APPE	NDIX A FUNCTIONAL FAILURE DEFINITIONS	
APPE	NDIX B CALIBRATION – PROBABILITY OF FAILURE	106
B.1 I	Normal Expected Life	107
B.2 I	PoF Curve Parameters	110
B.3 l	_ocation Factor	110
B.4 I	Duty Factor	113
B.5 (Observed Condition Factors	114
B.6 I	Measured Condition Factors	147
APPE	NDIX C INTERVENTIONS	165
APPE	NDIX D CALIBRATION – CONSEQUENCES OF FAILURE	
D.1 I	Financial	175
D.2	Safety	
D.3 I	Environmental	
D.4 I	Network Performance	
APPE	NDIX E WEIGHTING FACTORS FOR APPLICATION TO RIS	K MATRICES199
E.1 ⁻	Typical Weighting Factors for Criticality Index Bands	
	Neighting Factors for Determination of In-Year Risk	
E.3 \	Neighting Factors for Determination of Long Term Risk	207
APPE	NDIX F WORKED EXAMPLES	215
	Probability of Failure (PoF)	
	Consequences of Failure	

List of Figures

Figure 1: Process Overview	21
Figure 2: Risk Reporting Matrices	28
Figure 3: HI Banding	29
Figure 4: Probability of Failure	34
Figure 5: Ageing Reduction Factor	
Figure 6: Effect of Ageing Reduction Factor on Asset Deterioration	40
Figure 7: Steel Tower Health Score	43
Figure 8: Location Factor	
Figure 9: Location Factor - Submarine Cables	
Figure 10: Duty Factor	
Figure 11: Health Score Modifier	
Figure 12: Health Score Modifier - Main Transformer	
Figure 13: Health Score Modifier - Tapchanger	
Figure 14: Observed Condition Modifier	
Figure 15: Measured Condition Modifier	
Figure 16: Oil Test Modifier	
Figure 17: DGA Test Modifier	
Figure 18: FFA Test Modifier	
Figure 19: Reliability Modifier	
Figure 20: Consequences of Failure	
Figure 21: CoF Methodology	
Figure 22: Financial CoF	
Figure 23: Safety Consequences of Failure	
Figure 24: Environmental Consequences of Failure	
Figure 25: Network Performance Consequences of Failure	
Figure 26: Network Performance Asset Consequences of Failure (LV & HV)	88
Figure 27: Network Performance Consequences of Failure (EHV & 132kV)	
Figure 28: Network Performance - LV & HV	
Figure 29: Reference Network Performance Cost of Failure (EHV & 132kV)	193

List of Tables

Table 1: Categorisation of Assets	17
Table 2: Generic Terms for Assets	
Table 3: Excluded Asset Register Categories	19
Table 4: Description of Functional Failure Types	22
Table 5: Health Index Banding Criteria	29
Table 6: Criticality Index Banding Criteria	
Table 7: Health Score Used to Derive Typical PoF	30
Table 8: Duty Factor Methodology	51
Table 9: Health Score Factor	
Table 10: Health Score Factor For Transformers	
Table 11: Health Score Factor For Tapchangers	58
Table 12: Observed Condition Inputs	60
Table 13: Observed Condition Modifier - MMI Calculation Parameters	63
Table 14: Measured Condition Inputs	
Table 15: Measured Condition Modifier - MMI Calculation Parameters	
Table 16: Reference Costs of Failure	
Table 17: Sources of Information for Environmental Reference Case	
Table 18: Customer Number Adjustment for LV & HV Assets with High Demand Customers	90
Table 19: Functional Failure Definitions	
Table 20: Normal Expected Life	107
Table 21: PoF Curve Parameters	
Table 22: Distance From Coast Factor Lookup Table	110
Table 23: Altitude Factor Lookup Table	111
Table 24: Corrosion Category Factor Lookup Table	111
Table 25: Increment Constants	
Table 26: Default Environment (Indoor/Outdoor)	
Table 27: Submarine Cable Topography Factor	
Table 28: Submarine Cable Situation Factor	
Table 29: Submarine Cable Wind/Wave Factor	
Table 30: Combined Wave & Current Energy Factor	113
Table 31: Duty Factor Lookup Tables - Cables	
Table 32: Duty Factor Lookup Table - Switchgear	
Table 33: Duty Factor Lookup Table - Distribution Transformers	113
Table 34: Duty Factor Lookup Tables - Grid & Primary Transformers	
Table 35: Observed Condition Input - LV UGB: Steel Cover & Pit Condition	115

Table 36: Observed Condition Input - LV UGB: Water / Moisture	
Table 37: Observed Condition Input - LV UGB: Bell Condition Table 38: Observed Condition Input - LV UGB: Insulation Condition	
Table 39: Observed Condition Input - LV UGB: Signs of Heating	
Table 40: Observed Condition Input - LV UGB: Phase Barriers	
Table 41: Observed Condition Input - LV Circuit Breaker: External Condition	
Table 42: Observed Condition Input - LV Board (WM): Switchgear External Condition	
Table 43: Observed Condition Input - LV Board (WM): Compound Leaks	117
Table 44: Observed Condition Input - LV Board (WM): Switchgear Internal Condition & Operation	117
Table 45: Observed Condition Input - LV Board (WM): Insulation Condition	
Table 46: Observed Condition Input - LV Board (WM): Signs of Heating	
Table 47: Observed Condition Input - LV Board (WM): Phase Barriers	
Table 48: Observed Condition Input - LV Pillars: Switchgear External Condition Table 49: Observed Condition Input - LV Pillars: Compound Leaks	118
Table 49. Observed Condition Input - LV Pillars: Compound Leaks	110
Table 51: Observed Condition Input - LV Pillars: Insulation Condition	
Table 52: Observed Condition Input - LV Pillars: Signs of Heating	
Table 53: Observed Condition Input - LV Pillars: Phase Barriers	119
Table 54: Observed Condition Input - HV Switchgear (GM) - Distribution: Switchgear External Condition	
Table 55: Observed Condition Input - HV Switchgear (GM) - Distribution: Oil Leaks / Gas Pressure	
Table 56: Observed Condition Input - HV Switchgear (GM) - Distribution: Thermographic Assessment	
Table 57: Observed Condition Input - HV Switchgear (GM) - Distribution: Switchgear Internal Condition & Operation	
Table 58: Observed Condition Input - HV Switchgear (GM) - Distribution: Indoor Environment	
Table 59: Observed Condition Input - HV Switchgear (GM) - Distribution: Cable Boxes Condition Table 60: Observed Condition Input - HV Switchgear (GM) - Primary: Switchgear External Condition	
Table 61: Observed Condition Input - HV Switchgear (GM) - Primary: Oil Leaks / Gas Pressure	122
Table 62: Observed Condition Input - HV Switchgear (GM) - Primary: Thermographic Assessment	
Table 63: Observed Condition Input - HV Switchgear (GM) - Primary: Switchgear Internal Condition & Operation	
Table 64: Observed Condition Input - HV Switchgear (GM) - Primary: Indoor Environment	
Table 65: Observed Condition Input - HV Switchgear (GM) - Primary: Cable Boxes Condition	
Table 66: Observed Condition Input - EHV Switchgear (GM): Switchgear External Condition	
Table 67: Observed Condition Input - EHV Switchgear (GM): Oil Leaks / Gas Pressure	
Table 68: Observed Condition Input - EHV Switchgear (GM): Thermographic Assessment	
Table 69: Observed Condition Input - EHV Switchgear (GM): Switchgear Internal Condition & Operation	
Table 70: Observed Condition Input - EHV Switchgear (GM): Indoor Environment Table 71: Observed Condition Input - EHV Switchgear (GM): Support Structures	
Table 72: Observed Condition Input - ETV Switchgear (GM): Cable Boxes Condition	
Table 73: Observed Condition Input - 132kV Switchgear (GM): Switchgear External Condition	
Table 74: Observed Condition Input - 132kV Switchgear (GM): Oil Leaks / Gas Pressure	
Table 75: Observed Condition Input - 132kV Switchgear (GM): Thermographic Assessment	
Table 76: Observed Condition Input - 132kV Switchgear (GM): Switchgear Internal Condition & Operation	128
Table 77: Observed Condition Input - 132kV Switchgear (GM): Indoor Environment	
Table 78: Observed Condition Input - 132kV Switchgear (GM): Support Structures	
Table 79: Observed Condition Input - 132kV Switchgear (GM): Air Systems	
Table 80: Observed Condition Input - 132kV Switchgear (GM): Cable Boxes Condition Table 81: Observed Condition Input - HV Transformer (GM): Transformer External Condition	
Table 81: Observed Condition Input - HV Transformer (GM): Transformer External Condition	
Table 83: Observed Condition Input - EHV Transformer (GM): Main Tank Condition	131
Table 84: Observed Condition Input - EHV Transformer (GM): Coolers / Radiator Condition	
Table 85: Observed Condition Input - EHV Transformer (GM): Bushings Condition	
Table 86: Observed Condition Input - EHV Transformer (GM): Kiosk Condition	
Table 87: Observed Condition Input - EHV Transformer (GM): Cable Boxes Condition	
Table 88: Observed Condition Input - EHV Transformer (GM): Tapchanger External Condition	
Table 89: Observed Condition Input - EHV Transformer (GM): Internal Condition	
Table 90: Observed Condition Input - EHV Transformer (GM): Drive Mechanism Condition	
Table 91: Observed Condition Input - EHV Transformer (GM): Condition of Selector & Diverter Contacts Table 92: Observed Condition Input - EHV Transformer (GM): Condition of Selector & Diverter Braids	
Table 93: Observed Condition Input - Env Transformer (GM): Condition of Selector & Diverter Braids	
Table 94: Observed Condition Input - 132kV Transformer (GM): Coolers / Radiator Condition	
Table 95: Observed Condition Input - 132kV Transformer (GM): Bushings Condition	
Table 96: Observed Condition Input - 132kV Transformer (GM): Kiosk Condition	
Table 97: Observed Condition Input - 132kV Transformer (GM): Cable Boxes Condition	
Table 98: Observed Condition Input - 132kV Transformer (GM): Tapchanger External Condition	
Table 99: Observed Condition Input - 132kV Transformer (GM): Internal Condition	
Table 100: Observed Condition Input - 132kV Transformer (GM): Drive Mechanism Condition	
Table 101: Observed Condition Input - 132kV Transformer (GM): Condition of Selector & Diverter Contacts Table 102: Observed Condition Input - 132kV Transformer (GM): Condition of Selector & Diverter Braids	
Table 102: Observed Condition Input - 132kV Transformer (GM): Condition of Selector & Diverter Braids	
Table 103: Observed Condition Input - EHV Cable (Gir). Presence of Cystalline Lead	
Table 105: Observed Condition Input - 132kV Cable (Oil): Presence of Crystalline Lead	
Table 106: Observed Condition Input - 132kV Cable (Gas): Presence of Crystalline Lead	
Table 107: Observed Condition Input - Submarine Cable: External Condition Armour	139
Table 108: Observed Condition Input - LV Pole: Visual Pole Condition	
Table 109: Observed Condition Input - LV Pole: Pole Top Rot.	
Table 110: Observed Condition Input - LV Pole: Pole Leaning	
Table 111: Observed Condition Input - LV Pole: Bird / Animal Damage	

Table 112: Observed Condition Input – HV Pole: Visual Pole Condition	140
Table 113: Observed Condition Input – HV Pole: Visual Pole Condition: Pole Top Rot	140
Table 114: Observed Condition Input – HV Pole: Pole Leaning	
Table 115: Observed Condition Input – HV Pole: Bird / Animal Damage Table 116: Observed Condition Input - EHV Pole: Visual Pole Condition	
Table 117: Observed Condition Input - EHV Pole: Pole Top Rot.	
Table 118: Observed Condition Input - EHV Pole: Pole Leaning	141
Table 119: Observed Condition Input - EHV Pole: Bird / Animal Damage	
Table 120: Observed Condition Input - EHV Tower: Tower Legs Table 121: Observed Condition Input - EHV Tower: Bracings	
Table 121. Observed Condition Input - EHV Tower: Crossarms	
Table 123: Observed Condition Input - EHV Tower: Peak	
Table 124: Observed Condition Input - EHV Tower: Paintwork Condition	142
Table 125: Observed Condition Input - EHV Tower: Foundation Condition	
Table 126: Observed Condition Input - 132kV Tower: Tower Legs Table 127: Observed Condition Input - 132kV Tower: Bracings	
Table 127: Observed Condition Input - 132kV Tower: Crossarms	
Table 129: Observed Condition Input - 132kV Tower: Peak	
Table 130: Observed Condition Input - 132kV Tower: Paintwork Condition	
Table 131: Observed Condition Input - 132kV Tower: Foundation Condition	
Table 132: Observed Condition Input - EHV Fittings: Tower Fittings Condition Table 133: Observed Condition Input - EHV Fittings: Conductor Fittings Condition	
Table 133: Observed Condition Input - EHV Fittings: Insulators - Electrical Condition	
Table 135: Observed Condition Input - EHV Fittings: Insulators - Mechanical Condition	
Table 136: Observed Condition Input - 132kV Fittings: Tower Fittings Condition	
Table 137: Observed Condition Input - 132kV Fittings: Conductor Fittings Condition Table 138: Observed Condition Input - 132kV Fittings: Insulators - Electrical Condition	
Table 138: Observed Condition Input - 132kV Fittings: Insulators - Electrical Condition	
Table 140: Observed Condition Input - EHV Tower Line Conductor: Visual Condition	
Table 141: Observed Condition Input - EHV Tower Line Conductor: Midspan Joints	
Table 142: Observed Condition Input - 132kV Tower Line Conductor: Visual Condition	
Table 143: Observed Condition Input - 132kV Tower Line Conductor: Midspan Joints	
Table 144: Measured Condition Input - LV UGB: Operational Adequacy Table 145: Measured Condition Input - LV Circuit Breaker: Operational Adequacy	
Table 146: Measured Condition Input - LV Board (WM): Operational Adequacy	
Table 147: Measured Condition Input - LV Pillar: Operational Adequacy	
Table 148: Measured Condition Input - HV Switchgear (GM) - Distribution: Partial Discharge	
Table 149: Measured Condition Input - HV Switchgear (GM) - Distribution: Ductor Test	
Table 150: Measured Condition Input - HV Switchgear (GM) - Distribution: Oil Tests Table 151: Measured Condition Input - HV Switchgear (GM) - Distribution: Temperature Readings	
Table 152: Measured Condition Input - HV Switchgear (GM) - Distribution: Trip Test	
Table 153: Measured Condition Input - HV Switchgear (GM) - Primary: Partial Discharge	149
Table 154: Measured Condition Input - HV Switchgear (GM) - Primary: Ductor Test	149
Table 155: Measured Condition Input - HV Switchgear (GM) - Primary: IR Test	
Table 156: Measured Condition Input - HV Switchgear (GM) - Primary: Oil Tests Table 157: Measured Condition Input - HV Switchgear (GM) - Primary: Temperature Readings	
Table 158: Measured Condition Input - HV Switchgear (GM) - Primary: Trip Test	
Table 159: Measured Condition Input - EHV Switchgear (GM): Partial Discharge	151
Table 160: Measured Condition Input - EHV Switchgear (GM): Ductor Test	
Table 161: Measured Condition Input - EHV Switchgear (GM): IR Test Table 162: Measured Condition Input - EHV Switchgear (GM): Oil Tests / Gas Tests	
Table 162: Measured Condition Input - EHV Switchgear (GM): On Tests / Gas Tests	
Table 164: Measured Condition Input - EHV Switchgear (GM): Trip Test	
Table 165: Measured Condition Input - 132kV Switchgear (GM): Partial Discharge	152
Table 166: Measured Condition Input - 132kV Switchgear (GM): Ductor Test	
Table 167: Measured Condition Input - 132kV Switchgear (GM): IR Test Table 168: Measured Condition Input - 132kV Switchgear (GM): Oil Tests / Gas Tests	
Table 169: Measured Condition Input - 132kV Switchgear (GM). Oil Tests / Gas Tests	
Table 170: Measured Condition Input - 132kV Switchgear (GM): Trip Test	
Table 171: Measured Condition Input - HV Transformer (GM): Partial Discharge	
Table 172: Measured Condition Input - HV Transformer (GM): Temperature Readings Table 173: Measured Condition Input - EHV Transformer (GM): Main Transformer Partial Discharge	
Table 173: Measured Condition Input - EHV Transformer (GM): Main Transformer Partial Discharge	
Table 174: Measured Condition Input - EHV Transformer (GM): Temperature Readings	
Table 176: Measured Condition Input - 132kV Transformer (GM): Main Transformer Partial Discharge	
Table 177: Measured Condition Input - 132kV Transformer (GM): Temperature Readings	
Table 178: Measured Condition Input - 132kV Transformer (GM): Tapchanger Partial Discharge	
Table 179: Measured Condition Input - EHV Cable (Non Pressurised): Sheath Test Table 180: Measured Condition Input - EHV Cable (Non Pressurised): Partial Discharge	
Table 180: Measured Condition Input - EHV Cable (Non Pressurised): Faultal Discharge	
Table 182: Measured Condition Input - EHV Cable (Oil): Leakage	
Table 183: Measured Condition Input - EHV Cable (Gas): Leakage	
Table 184: Measured Condition Input - 132kV Cable (Non Pressurised): Sheath Test	
Table 185: Measured Condition Input - 132kV Cable (Non Pressurised): Partial Discharge Table 186: Measured Condition Input - 132kV Cable (Non Pressurised): Fault History	
Table 187: Measured Condition Input - 132kV Cable (Noir) ressuriced. Fault History	

able 188: Measured Condition Input - 132kV Cable (Gas): Leakage	
able 189: Measured Condition Input - Submarine Cable: Sheath Test	
able 190: Measured Condition Input - Submarine Cable: Partial Discharge	
able 191: Measured Condition Input - Submarine Cable: Fault History	
able 192: Measured Condition Input - LV Pole: Pole Decay / Deterioration	
able 193: Measured Condition Input - HV Pole: Pole Decay / Deterioration	
able 194: Measured Condition Input - EHV Pole: Pole Decay / Deterioration	
able 195: Measured Condition Input - EHV Fittings: Thermal Imaging	
able 196: Measured Condition Input - EHV Fittings: Ductor Test	
able 197: Measured Condition Input - 132kV Fittings: Thermal Imaging	
able 198: Measured Condition Input - 132kV Fittings: Ductor Test	
able 199: Measured Condition Input - EHV Tower Line Conductor: Conductor Sampling	
able 200: Measured Condition Input - EHV Tower Line Conductor: Corrosion Monitoring Survey	
able 201: Measured Condition Input - 132kV Tower Line Conductor: Conductor Sampling	
able 202: Measured Condition Input - 132kV Tower Line Conductor: Corrosion Monitoring Survey	
able 203: Moisture Condition State Calibration	
able 204: Acidity Condition State Calibration	
able 205: Breakdown Strength Condition State Calibration	
able 206: Oil Test Factor Calibration	
able 207: Oil Test Collar Calibration	
able 208: Hydrogen Condition State Calibration	
able 209: Methane Condition State Calibration	163
able 210: Ethylene Condition State Calibration	163
able 211: Ethane Condition State Calibration	
able 212: Acetylene Condition State Calibration	
able 213: DGA Change Category Calibration	
able 214: DGA Test Factor Calibration	164
able 215: FFA Test Factor	
able 216: Ageing Reduction Factor	164
able 217: Input Data Affected by Refurbishment Interventions	
able 218: Reference Financial Cost of Failure	
able 219: Type Financial Factors	
able 220: Access Factor: OHL	
able 221: Access Factor: Switchgear & Transformer Assets	
able 222: Reference Safety Probabilities	181
able 223: Reference Safety Cost	
able 224: Reference Safety Cost - Disproportion Factor	
able 225: Safety Consequence Factor – Switchgear, Transformers & Overhead Lines	
able 226: Safety Consequence Factor - Cables	184
able 227: Safety Risk Reduction Factor	
able 228: Reference Environmental Cost of Failure	
able 229: Type Enviromental Factor	
able 230: Size Environmental Factor	
able 231: Location Environmental Factor	
able 232: Costs Used in Derivation of Network Performance Reference Cost of Failure	
able 233: Reference Network Performance Cost of Failure for LV & HV Assets	
able 234 (Table: 18 Repeated): Customer Number Adjustment for LV & HV Assets with High Demand Customers	
able 235: Reference Network Performance Cost of Failure for EHV & 132kV assets (Secure)	195
able 236: Typical CoF Weightings for Criticality Index Bands for use with Risk Matrices	
able 237: Typical PoF Weightings for Health Indices Bands for use in the calculation of In-Year Risk from Risk Matrices	
able 238: Risk Matrix Weightings - Monetised In-Year Risk	
able 239: Typical Forecast Ageing Rates for use in Determination of Cumulative Discounted PoF Weightings for Risk Matrices .	
able 240: Typical Cumulative Discounted PoF Weightings for Health Indices Bands for use in the Calculation of Long Term Risk	
sk Matrices	
able 241: Risk Matrix Weightings - Risk Index (Long Term Risk)	

1. GLOSSARY

Term	Definition
Ageing Rate	A parameter that describes the rate of deterioration of Asset Health with age.
Ageing Reduction Factor	A factor that slows down the Ageing Rate of older assets.
Asset Category	A generic term to describe a group of asset types where an input, calculation or calibration within the Common Network Asset Indices Methodology is common.
Asset Health	Represents the condition of an asset measured against a common set of condition factors.
Asset Register Category	Groupings of asset type that are used in reporting the asset population in Ofgem's RIIO-ED2 RIGs. Asset Register Categories are used as Asset Categories within this document, where appropriate.
Asset Replacement	An activity defined in Ofgem's RIIO-ED2 RIGs: Annex A – Glossary to remove an existing asset(s) and install a new asset.
Average Overall Consequence of Failure	The mean average of the Overall Consequence of Failure for all assets within the same Health Index Asset Category.
Catastrophic Failure	A sudden or total functional failure of an asset (or a subcomponent), from which recovery of the asset (and/ or sub component) is impossible.
Condition-based Functional Failure	The inability of an asset to perform its required function, because of the condition of asset. This includes: failures disruptive to the supply of electricity; catastrophic failures of equipment or subcomponents; failure of an asset to operate (or be operated) when required; and failure of an asset to perform its rated duty.
Condition Cap	A maximum limit of Health Score, which forms part of a Condition Modifier.
Condition Collar	A minimum limit of Health Score, which forms part of a Condition Modifier.
Condition Factor	A Factor, which forms part of a Condition Modifier.
Condition Input	Result of an observation or test, used to evaluate the health of an asset.
Condition Input Cap	A maximum limit of Health Score associated with a particular Condition Input.
Condition Input Collar	A minimum limit of Health Score associated with a particular Condition Input.
Condition Input Factor	A Factor associated with a particular Condition Input.
Condition Modifier	A Modifier based on a set of observed or measured Condition Inputs.
Consequence Categories	Categories relating to the different areas that may be impacted by asset failure. The categories represent areas where the Consequences of Failure can be separately evaluated.
Consequences Factor	A Factor applied to the Reference Cost of Failure in order to determine the Consequences of Failure of an asset.
Consequences of Failure	The impact of Condition-based Functional Failure of an asset.
Criticality	A generic term to describe the Consequences of Failure of an asset and indicate its importance in the electricity network
Criticality Index	 This is a framework for collating information on the Consequences of Failure of distribution assets and for tracking changes over time. The Criticality Index is a comparative measure of Consequence of Failure. For a particular asset, the Criticality Index is provided by:- the location of the asset within the Criticality Index Bands; and the Reference Costs of Failure, for the relevant Asset Register Category
Criticality Index Banding Criteria	The criteria used to define the Criticality Index Bands, expressed as a percentage of the Reference Costs of Failure for each Asset Register Category.
Criticality Index Bands	Bandings used for the reporting of the Overall Consequence of Failure for individual assets, relative to the Reference Costs of Failure for assets in the same Asset Register Category.
Current Health Score	The Health Score calculated for an asset that represents the Asset Health at the time (i.e. in the year) of calculation.
Degraded Failure	A functional failure of an asset (or a subcomponent), from which the asset (and/ or sub component) can be restored, but it may not be cost effective to do so.
DGA Test Modifier	A Condition Modifier applied to HV Transformer, EHV Transformer and 132kV Transformer assets, based on the results of dissolved gas analysis.
Duty Factor	A Factor representing the effect that duty has on the Expected Life of an asset.
Expected Life	The time (in years) in an asset's life when it would be expected to first observe significant deterioration (Health Score 5.5), taking into consideration location or duty, in addition to the asset type.
Factor	A multiplication value, varying around unity.
FFA Test Modifier	A Condition Modifier applied to HV Transformer, EHV Transformer and 132kV Transformer assets, based on measurements of furfuraldehyde (FFA) in oil.
Future Health Score	The Health Score(s) calculated for an asset that represents the Asset Health in any year beyond the current year.
Health	A generic term to describe the Asset condition and indicate its level of degradation.

Term	Definition
	A framework for collating information on the Asset Health of distribution assets. This framework shall enable:-
Health Index	 tracking of changes in Asset Health over time; and identification of the Probability of Failure associated with the asset condition. For a particular asset, the reported Health Index is provided by the location of the asset within the Health Index Bands.
Health Index Asset Category	Asset categorisations, used within the Network Assets Workbook, for which DNOs have agreed Secondary Deliverables. Health Index Asset Categories are used as Asset Categories within this document, where appropriate.
Health Index Banding Criteria	The criteria used to define the Health Index Bands.
Health Index Bands	Bandings used for the reporting of the Health Indices for individual assets, based on the Probability of Failure indicated by each asset's health and condition.
Health Score	A numerical value representing a measure of Asset Health.
Health Score Cap	A maximum limit applied to the Health Score, associated with a particular condition point.
Health Score Collar	A minimum limit applied to the Health Score, associated with a particular condition point.
Health Score Factor	A Factor based on one or more Condition Modifiers.
Health Score Modifier	A Modifier applied to the Initial Health Score of assets.
Incipient Failure	A functional failure of an asset (or a subcomponent), which if unaddressed may lead to a degraded or catastrophic failure.
Initial Health Score	The Health Score calculated for an asset, based solely on age-based criteria.
Location Factor	A Factor representing the effect that the environment, in which the asset is installed, has on its Expected Life.
Long Term Risk	A monetised value of risk that represents the total discounted value of risk based on the predicted Probability of Failure and Consequence of Failure over the period of 32 years of an asset.
Measured Condition Input	A Condition Input associated with the measured condition of an asset
Methodology	For the purposes of this document, the Methodology means the Common Network Asset Indices Methodology.
Modifier	A value derived from factors, used to modify a base value within the Asset Health calculation.
Network Asset Risk Metric (NARM)	The measure by which Ofgem will measure the effectiveness of the asset intervention programmes as directed in its RIIO-ED2 price control determination.
Network Asset Secondary Deliverables	Secondary Deliverables relating to Asset Health, criticality and risk, as defined for the RIIO-ED1 period in Standard Condition 51 of the electricity distribution licence.
Normal Expected Life	The time (in years) in an asset's life when it would be expected to first observe significant deterioration (Health Score 5.5), based on consideration of the asset type alone.
Observed Condition Input	A Condition Input associated with the observed condition of an asset
Oil Test Modifier	A Condition Modifier applied to HV Transformer, EHV Transformer and 132kV Transformer assets, based on oil test measurements.
Overall Consequence of Failure	The total Consequence of Failure for an asset, taking account of the Consequences of Failure in all Consequence Categories.
Probability of Failure	The likelihood of a Condition-based Functional Failure occurring (per annum).
Reference Costs of Failure	A base evaluation of the Consequences of Failure in a particular Consequence Category.
Refurbishment	A one-off activity, defined in Ofgem's RIIO-ED1 Regulatory Instructions and Guidance: Annex A – Glossary that is undertaken on an asset that is deemed to be close to end of life or is otherwise not fit for purpose that extends the life of that asset or restores its functionality.
Reliability Collar	A minimum limit of Health Score, which forms part of a Reliability Modifier.
Reliability Factor	A Factor, which forms part of a Reliability Modifier.
Reliability Modifier	A Modifier applied (at individual DNO discretion) to the Current Health Score of assets.
Risk Index	Has the meaning given in Standard Condition 51 of the electricity distribution licence.
Risk Matrix	The 5x4 matrix formed by the Health Index and Criticality Index respectively

2. ACRONYMS

Acronym	Description
AAAC	All Aluminium Alloy Conductors
ACB	Air Circuit Breaker
ACSR	Aluminium Conductor Steel Reinforced
Cad Cu	Cadmium Copper
CCA	Chromated Copper Arsenate
CI	Customer Interruption
CML	Customer Minutes Lost
CMR	Continuous Maximum Rating
CoF	Consequence of Failure
CRC	Charge Restriction Condition
DGA	Dissolved Gas Analysis
DIN	Dangerous Incident Notification
DNO	Distribution Network Operator
DP	Degree of Polymerisation
DPCR5	Distribution Price Control Review for five years from 1 April 2010 to 31 March 2015
DSI	Death or Serious Injury
EHV	Extra High Voltage
ENA	Energy Networks Association
EQ	Equation
ESQCR	Electricity, Safety, Quality and Continuity Regulations 2002
FFA	Furfuraldehyde
FFC	Fluid Filled Cable
GB	Great Britain
GM	Ground Mounted
HI	Health Index
HSE	Health and Safety Executive or Health, Safety and Environment
HM	Her Majesty or His Majesty
HV	High Voltage
ID	Indoor
IIS	Interruption Incentive Scheme
IR	Insulation Resistance
kV	Kilovolt
LV	Low Voltage
LV UGB	Low Voltage Underground Board (Link Box)
LTA	Lost Time Accident
MMI	Maximum and Multiple Increment
MVA	Megavolt Ampere
NaFIRS	National Fault and Interruption Reporting Scheme
NARM	Network Asset Risk Metric
NAW	Network Assets Workbook
NEDeRs	National Equipment Defect Reporting Scheme
OD	Outdoor
	Office of Gas and Electricity Markets
Ofgem OHL	Overhead Line
PM	Pole Mounted
PoF	Probability of Failure
RIG	Regulatory Instructions and Guidance
RIIO	Ofgem's price control framework first implemented in 2013
RIIO-ED1	First price control for Electricity Distribution companies under the RIIO framework from 1 April 2015 to 31 March 2023
RIIO-ED2	Second price control for Electricity Distribution companies under the RIIO framework from 1 April 2023 to 31 March 2028
RMU	Ring Main Unit
SDI	Secondary Deliverable Intervention
SF ₆	Sulphur Hexafluoride
SF6 SLC	Standard Licence Condition
ULU	

DNO Common Network Asset Indices Methodology

SOP	Suspension of Operational Practice
VoLL	Value of Lost Load
VSL	Value of Statistical Life
WM	Wall Mounted

3. INTRODUCTION

For RIIO-ED1, which runs from 1 April 2015 to 31 March 2023, Ofgem has introduced regulatory reporting requirements for GB DNOs to report information relating to both Asset Health and criticality. This information is known as the Network Asset Indices, and these provide an indication of the risk of condition-based failure of network assets. These were used as a Network Output Measure, with DNOs targeted to deliver Network Asset Secondary Deliverables that reflected the risk reduction benefit delivered through activities such as asset replacement and refurbishment.

The requirement for reporting of Network Asset Indices was required within Standard Licence Condition 51 for RIIO-ED1. This licence condition also required DNOs to jointly develop a Common Network Asset Indices Methodology, such that DNOs adopted a common approach to the reporting of indices that measure Asset Health and Criticality.

The Common Network Asset Indices Methodology (v1.1) was approved by Ofgem in May 2017, for use in RIIO-ED1.

A revised version of the Common Network Asset Indices Methodology (herein referred to as "the Methodology") has been developed by DNOs for application in RIIO-ED2 to meet the anticipated changes in regulatory requirements. This revised version also incorporates changes and amendments identified by DNOs based upon the experience gained from implementing the Methodology during RIIO-ED1.

In RIIO-ED2, DNOs will have required network risk outputs relating to Network Asset Risk Metrics (NARM). Network Asset Indices provide the required Network Asset Risk Metrics.

The required network risk outputs relate to the improvement in risk that is delivered by Asset Replacement, as well as some Refurbishment activities. Such activities are referred to as Interventions.

The required network risk outputs will be agreed as part of the RIIO-ED2 determination and are consistent across the 61 Asset Categories by DNOs. Each DNO is required to report on all the required network risk outputs for all 61 Asset Register Categories regardless of whether they manage such assets, by including a nil return where no assets are managed to ensure consistent reporting. Consequently, DNOs are now required to maintain the Common Network Asset Indices Methodology for all Asset Categories where they are to report the required network risk outputs. This methodology covers all the agreed 61 Asset Categories.

3.1 Network Asset Indices Methodology Objectives

For RIIO-ED1, Standard Licence Condition 51 Part D states the following:

The Network Asset Indices Methodology Objectives are that compliance with the Common Network Asset Indices Methodology enables:

- a) the comparative analysis of network asset performance between Distribution Service Providers over time;
- *b)* the assessment of the licensee's performance against the Network Asset Secondary Deliverables; and
- c) the communication of information affecting the Network Asset Secondary Deliverables between the licensee, the Authority and, as appropriate, other interested parties in a transparent manner.

The Methodology meets these objectives and those anticipated to apply for RIIO-ED2.

The Methodology details the inputs, calculations and calibration parameters to be used in the calculation of Asset Health and criticality. This means that, where the Methodology is applied, a common output shall be determined for a common set of input data. This facilitates use of the output for comparative analysis. For the avoidance of doubt, all values for parameters outlined within this document are fixed and shall be adhered to in the application of the Methodology.

The communication of information relating to the required network risk outputs, and their delivery, shall be through risk matrices (showing Asset Health and criticality). These are required for regulatory reporting purposes. The output from the Methodology will be used for the population of these risk matrices.

3.2 Asset Health and Probability of Failure

Asset Health is a measure of the condition of an asset and the proximity to the end of its useful life. The Methodology includes a common methodology for the calculation of Asset Health for individual assets. This includes:-

- i) current Asset Health informed by observed and measured condition factors; and
- ii) future Asset Health, using assumptions regarding the likely future deterioration in Asset Health.

In order to take account of future deterioration it is necessary for the Methodology to:-

- i) include some age-based elements within the calculation of Asset Health; and
- ii) use a continuous Health Score scale for the evaluation of Asset Health.

As the health of an asset deteriorates (i.e. its condition worsens), the likelihood that it will fail due to condition increases.

The Methodology relates Asset Health to the associated probability of condition-based failure (PoF). For each asset type, the Methodology specifies the exact relationship between Health Score and PoF. Therefore, Asset Health can equally be expressed in terms of PoF.

3.3 Consequences of Failure and Asset Criticality

When an asset fails, there will be an associated impact resulting from that failure. For example, there could be a loss of supply to customers, or an injury resulting from a failure. Such impacts are referred to as Consequences of Failure (CoF).

The Methodology includes a common methodology for the evaluation of the likely CoF associated with the condition-based failure of individual assets. Monetised values are determined for all CoF in \pounds (at 2012/13 prices).

The criticality of an asset is a relative measure of its CoF compared with the Reference Cost of Failures for its asset type.

3.4 Regulatory Reporting of Network Asset Indices

For each asset, the Methodology shall determine:-

- i) the PoF (per annum);
- ii) a forecast of the PoF (per annum) in any given future year; and
- iii) the CoF (£).

associated with condition-based failures. This information is used for the regulatory reporting of the Network Asset Indices for each asset.

The Network Asset Indices comprise three components:-

- i) Health Index which relates to Asset Health and PoF;
- ii) Criticality Index which relates to CoF; and
- iii) Risk Index this is a monetised risk measure, determined from the combination of the Health Index and Criticality Index, which represents the Long Term Risk associated with asset failure and is the present value (£) of the current and future risk associated with a typical asset within the relevant Health Index and Criticality Index Bands.

The Health Index is a framework for collecting information relating to Asset Health and PoF. The Health Index consists of five bandings. Assets are allocated a Health Index Band based on the Health Score that is determined for the individual asset, which can be directly related to its PoF.

The Criticality Index is a framework for collecting information relating to CoF. The Criticality Index consists of four bandings. Assets are allocated to a Criticality Index Band according to the relative magnitude of the CoF of the individual asset compared to a reference value for the relevant Asset Category.

Each reported asset is allocated to the Risk Matrix which consists of a Health Index Band and a Criticality Index Band. The Risk Index for an asset is based on its position in the Risk Matrix. By assigning a typical PoF and degradation assumptions to each Health Index Band, and a typical CoF to each Criticality Index Band, a monetised value of long term risk (i.e. the present value of current and future risk) can be determined.

Separate Risk Matrices are produced to show:-

- i) existing asset risk;
- ii) asset risk at the end of a price control period without taking into account any impact of planned interventions; and
- iii) asset risk at the end of a price control period taking account of planned interventions.

3.5 Hierarchy of Asset Categories

The Methodology applies to many different types of assets (e.g. overhead line conductor, cables, switchgear etc.).

Whilst the Methodology applies the same generic principles in evaluating health and criticality for each asset type, the inputs, calculations and calibrations differ for different types of assets.

For different asset types, this recognises variations in:-

- i) the types of Condition-based Functional Failures;
- ii) the evaluation of Asset Health; and
- iii) the impact of failure.

Within this document the inputs, calculations and calibrations are often specified according to the type of asset. The groupings of assets used for specifying this information are referred to as Asset Categories.

There are two main types of Asset Category used within this document:-

- i) Asset Register Category; and
- ii) Health Index Asset Category.

The Asset Register Category represents the groupings of asset type that are used in reporting the asset population in Ofgem's RIIO-ED2 RIGs. The Asset Register Category is also used for the annual reporting of Network Asset Indices to Ofgem.

The Health Index Asset Category represents groupings of asset type at a higher level than the Asset Register Category, where common parameters or treatments are applied in the Methodology.

In this document, each Health Index Category is used to describe the inputs, calculations and calibrations that shall apply to assets in the Asset Register Categories shown in Table 1.

Health Index Asset Category	Asset Register Category
LV OHL Support	LV Poles
LV UGB	LV UGB
	LV Board (WM)
	LV Board (X-type Network) (WM)
	LV Circuit Breaker
LV Switchgear and Other	LV Pillar (ID)
	LV Pillar (OD at Substation)
	LV Pillar (OD not at a Substation)
	6.6/11kV Poles
HV OHL Support - Poles	20kV Poles
	6.6/11kV CB (GM) Primary
HV Switchgear (GM) - Primary	20kV CB (GM) Primary
	6.6/11kV CB (GM) Secondary
	6.6/11kV RMU
	6.6/11kV X-type RMU
HV Switchgear (GM) - Distribution	6.6/11kV Switch (GM)
	20kV CB (GM) Secondary
	20kV RMU
	20kV Switch (GM)
	6.6/11kV Transformer (GM)
HV Transformer (GM)	20kV Transformer (GM)
	33kV Pole
EHV OHL Support - Poles	66kV Pole
	33kV Fittings
EHV OHL Fittings	66kV Fittings
EUV OUL Conductor (Tower Lines)	33kV OHL (Tower Line) Conductor
EHV OHL Conductor (Tower Lines)	66kV OHL (Tower Line) Conductor
EHV OHL Support - Towers	33kV Tower
Env one support - rowers	66kV Tower
EHV UG Cable (Gas)	33kV UG Cable (Gas)
	66kV UG Cable (Gas)
EHV UG Cable (Non Pressurised)	33kV UG Cable (Non Pressurised)
	66kV UG Cable (Non Pressurised)
EHV UG Cable (Oil)	33kV UG Cable (Oil)
	66kV UG Cable (Oil)

TABLE 1:	CATEGORISATION OF ASSETS

Health Index Asset Category	Asset Register Category
Submarine Cables	HV Sub Cable
	EHV Sub Cable
	132kV Sub Cable
	33kV CB (Air Insulated Busbars)(ID) (GM)
	33kV CB (Air Insulated Busbars)(OD) (GM)
	33kV CB (Gas Insulated Busbars)(ID)(GM)
	33kV CB (Gas Insulated Busbars)(OD)(GM)
	33kV RMU
EHV Switchgear (GM)	33kV Switch (GM)
	66kV CB (Air Insulated Busbars)(ID) (GM)
	66kV CB (Air Insulated Busbars)(OD) (GM)
	66kV CB (Gas Insulated Busbars)(ID)(GM)
	66kV CB (Gas Insulated Busbars)(OD)(GM)
EHV Transformer	33kV Transformer (GM)
	66kV Transformer (GM)
132kV OHL Fittings	132kV Fittings
132kV OHL Conductor (Tower Lines)	132kV OHL (Tower Line) Conductor
132kV OHL Support - Tower	132kV Tower
132kV UG Cable (Gas)	132kV UG Cable (Gas)
132kV UG Cable (Non Pressurised)	132kV UG Cable (Non Pressurised)
132kV UG Cable (Oil)	132kV UG Cable (Oil)
	132kV CB (Air Insulated Busbars)(ID) (GM)
	132kV CB (Air Insulated Busbars)(OD) (GM)
132kV CBs	132kV CB (Gas Insulated Busbars)(ID) (GM)
	132kV CB (Gas Insulated Busbars)(OD) (GM)
132kV Transformer	132kV Transformer (GM)
le contra de la co	•

Within this document several generic terms are used to refer to higher level groupings of assets. The mapping of these generic terms to Health Index Asset Category is shown in Table 2.

TABLE 2. GENERIC TERMS FOR ASSETS		
Gene	eric Term	Health Index Asset Category
	Pressurised Cable	EHV UG Cable (Oil)
		EHV UG Cable (Gas)
		132kV UG Cable (Oil)
Cable		132kV UG Cable (Gas)
		EHV UG Cable (Non Pressurised)
	Non Pressurised Cable	132kV UG Cable (Non Pressurised)
		Submarine Cables
Switchgear		LV Switchgear and Other
		LV UGB
		HV Switchgear (GM) - Distribution
		HV Switchgear (GM) - Primary
		EHV Switchgear (GM)
		132kV CBs

TABLE 2: GENERIC TERMS FOR ASSETS

Gen	eric Term	Health Index Asset Category
Transformers	HV Transformer	HV Transformer (GM)
Transformers	Primary & Grid (or EHV &	EHV Transformer
	132kV) Transformers	132kV Transformer
		LV OHL Support
	Poles	EHV OHL Support - Poles
		HV OHL Support - Poles
	Touroro	EHV OHL Support - Towers
Overhead Line	Towers Fittings	132kV OHL Support - Towers
		EHV OHL Fittings
		132kV OHL Fittings
		EHV OHL Conductor (Tower Lines)
	OHL Conductor	132kV OHL Conductor (Tower Lines)

In some calibration tables, asset subcomponents are identified. Where not explicitly stated the calibration of the Health Index Asset Category applies to all subcomponents.

Defined Asset Register Categories not covered by the Methodology are shown in Table 3.

Asset Register Category	Voltage
LV Main (OHL) Conductor	LV
LV Service (OHL)	LV
LV Main (UG Consac)	LV
LV Main (UG Plastic)	LV
LV Main (UG Paper)	LV
Rising & Lateral Mains	LV
LV Service (UG)	LV
LV Service associated with RLM	LV
Cut Out (Metered)	LV
LV Transformers/Regulators	LV
6.6/11kV OHL (Conventional Conductor)	HV
6.6/11kV OHL (BLX or similar Conductor)	HV
20kV OHL (Conventional Conductor)	HV
20kV OHL (BLX or similar Conductor)	HV
6.6/11kV UG Cable	HV
20kV UG Cable	HV
6.6/11kV CB (PM)	HV
6.6/11kV Switch (PM)	HV
6.6/11kV Switchgear - Other (PM)	HV
20kV CB (PM)	HV
20kV Switch (PM)	HV
20kV Switchgear - Other (PM)	HV
6.6/11kV Transformer (PM)	HV
20kV Transformer (PM)	HV
Batteries at GM HV Substations	HV
33kV OHL (Pole Line) Conductor	EHV
66kV OHL (Pole Line) Conductor	EHV
33kV Switchgear - Other	EHV
33kV Switch (PM)	EHV
66kV Switchgear - Other	EHV

TABLE 3: EXCLUDED ASSET REGISTER CATEGORIES

Asset Register Category	Voltage
33kV Transformer (PM)	EHV
Batteries at 33kV Substations	EHV
Batteries at 66kV Substations	EHV
132kV OHL (Pole Line) Conductor	132kV
132kV Pole	132kV
132kV Switchgear - Other	132kV
Batteries at 132kV Substations	132kV
Pilot Wire Overhead	Other
Pilot Wire Underground	Other
Cable Tunnel (DNO owned)	Other
Cable Bridge (DNO owned)	Other
Electrical Energy Storage	Other

4. OVERVIEW OF COMMON NETWORK ASSET INDICES METHODOLOGY

This section gives a high-level overview of the Common Network Asset Indices Methodology. Detailed explanations are given in Sections 6 and 7, with accompanying worked examples in Appendix F.

4.1 Key Outputs

The two key outputs from the Methodology are:-

- i) an evaluation of PoF (the likelihood of condition-based failure per annum) for individual assets; and
- ii) an evaluation of the CoF associated with condition-based failures for individual assets (i.e. the impact of a failure, expressed as a monetised value, in £).

The risk of condition-based failure, associated with an individual asset, is the product of the PoF and the CoF. Therefore, the two key outputs from the Methodology, when used together, provide information relating to condition-based risk.

PoF and CoF are calculated for all individual assets within those Health Index Asset Categories where a DNO has agreed Network Asset Secondary Deliverables. An overview of the calculation process is shown in Figure 1.

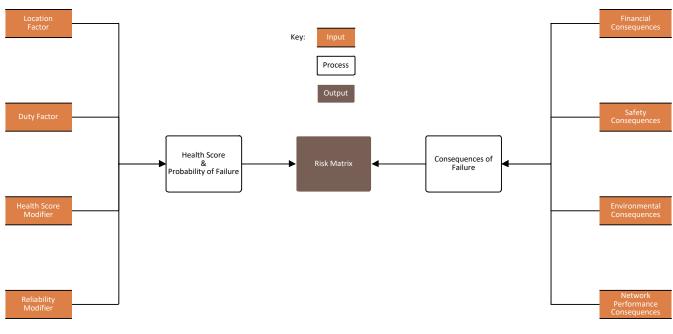


FIGURE 1: PROCESS OVERVIEW

The regulatory reporting framework for Network Asset Indices comprises three components:-

- i) the Health Index, summarised in five bands HI1-5;
- ii) the Criticality Index, summarised in four bands C1-4; and
- iii) the Risk Index.

For regulatory reporting purposes, individual assets are assigned to a Health Index Band based on the Health Score that has been determined for the asset under the Methodology. The evaluation of PoF is dependent on:-

- i) firstly, assessing Asset Health; and
- ii) then deriving PoF from Asset Health.

Assets are assigned to a Criticality Index Band based on the relative magnitude of their Overall CoF, when compared to a common reference value for the Asset Register Category (the Reference Costs of Failure).

The Risk Index is a monetised risk measure that is calculated from the reported Health Index and Criticality Index information by assigning each cell in the Risk Matrix a reference risk value in \pounds . Given the assessments above, an individual asset can be assigned a position within the Risk Matrix for that asset type.

The allocation of assets to Health Index Bands and Criticality Index Bands, and derivation of Risk Index, is described further in Section 5.

The regulatory reporting of Network Asset Indices includes the reporting of forecast future Health Index and Criticality Index for each asset, as well as the current position. This requires that the Methodology includes assessment of:-

- i) current PoF and CoF; and
- ii) forecast future PoF and CoF (including the assessment of changes arising from Interventions). This requires a common assessment of deterioration and a consistent view of which actions impact health and/or criticality.

4.2 Definition of Failure

The evaluation of PoF and CoF within the Methodology may be viewed as two separate distinct calculations. However, they are both based on consideration of the same set of condition-based failure modes (i.e. the same definition of what is a failure) to ensure the same set of potential events is being considered in the assessment of probabilities and consequences.

The Methodology considers Functional Failures in the derivation of PoF and CoF. These relate to the inability of an asset to adequately perform its intended function and therefore are not solely limited to failures that result in an interruption to supply.

Functional failures have been split into three sub-categories (Functional Failure Types), these are described as follows:

Functional Failure Type	Description	
Catastrophic	A sudden and total failure from which recovery of the asset (and or sub component) is not feasible.	
Degraded	A significant failure associated with advanced degradation.	
Incipient	A minor failure associated with early stage degradation.	

TABLE 4: DESCRIPTION OF FUNCTIONAL FAILURE	TYPES
TABLE 4. DESCRIPTION OF FUNCTIONAL FAILURE	TIFES

The Functional Failures considered in the Methodology are defined for each Asset Category, in Appendix A. These relate only to Functional Failures directly resulting from the condition of the asset itself. Failures of function due to third party activities are not included.

4.3 Evaluation of Current Asset Health and Probability of Failure

4.3.1 Overview

This section describes how current Asset Health is calculated and used to derive an associated PoF. Worked examples of this calculation can be found in Appendix F.

4.3.2 Current Health Score

The current health of an asset is represented by a Health Score (the Current Health Score) using a continuous scale between 0.5 and 10.

A value of 0.5 on this scale represents an asset where the health is the same as would be expected for a new asset. A Health Score of 5.5 represents the point in an asset's life beyond which significant deterioration may begin to be observed. This is where the PoF of the asset is approximately double that of a new asset. A Health Score of 10 represents an asset in extremely poor condition, where the PoF is 10 times that of a new asset.

The Current Health Score for an individual asset is derived from information relating to:-

- i) the age of the asset;
- ii) the Normal Expected Life for an asset of its type;
- iii) factors relating to aspects of the environment in which the asset is installed that may impact on its Expected Life (Location Factors);
- iv) factors relating to the usage of the asset at its specific location that may impact on its Expected Life (Duty Factors);
- v) factors relating to the observed condition of the asset (Observed Condition Inputs);
- vi) factors relating to the condition/health of the asset determined by measurements, tests or functional checks (Measured Condition Inputs); and
- vii) a factor relating to generic reliability issues associated with the individual make and type of an asset (Reliability Modifier).

The calculation of Current Health Score is performed in two main steps:-

- i) calculation of an initial age-based Health Score (the Initial Health Score) using an agebased degradation model; then
- ii) modification of the Initial Health Score using:-
 - known condition information for the asset; and
 - a Reliability Modifier, if appropriate.

These two steps are described in more detail below:-

i) <u>Calculation of the Initial Health Score</u>

The Initial Health Score is calculated from the age of the asset and its Expected Life. The Expected Life for the asset is the Normal Expected Life for an asset of its type, adjusted to take account of the Location Factors and Duty Factors relating to the individual asset's location and usage.

A generic exponential relationship between age and health is used to determine the Initial Health Score. The shape of the exponential curve is dependent on the Expected Life of the asset.

The Initial Health Score is capped at a value of 5.5, so that an asset is not assigned a Current Health Score that implies that it has reached the end of its useful life purely on the basis of its age.

The Methodology defines the calculation of Initial Health Score for all Asset Categories. This includes definitions of the Location Factor and Duty Factor to be applied, and their calibration parameters. Therefore, an asset in any DNO Licence Area with the same age, type, location and duty attributes will be assigned the same Initial Health Score using the Methodology.

The steps to calculate the Initial Health Score are detailed in Sections 6.1.3 to 6.1.6.

ii) Modification of the Initial Health Score

The Current Health Score is determined by application of a Health Score Modifier, and separate Reliability Modifier, to the Initial Health Score.

A Health Score Modifier is determined for each individual asset, using information relating to the asset's condition. This information can be broadly categorised as either:-

- Observed Condition Inputs; or
- Measured Condition Inputs.

Observed Condition Inputs relate to condition information that can be gathered by the inspection of an asset. However, it is not always possible to gather observed condition data without undertaking intrusive inspection.

Alternatively, diagnostic tests, measurements or functional checks may be undertaken to ascertain the health of the asset. Measured Condition Inputs relate to condition information that is collected in this way.

The Methodology defines various Observed Condition Inputs and Measured Condition Inputs that can be used to determine the Health Score Modifier for an asset, including their calibration parameters.

These Condition Inputs and the methodology for determining the values for the Health Score Modifier are detailed in Sections 6.7 to 6.13.

The application of the Health Score Modifier to the Initial Health Score is described in Section 6.1.7.

It may be appropriate to apply a Reliability Modifier in the derivation of the Current Health Score (as detailed in Section 6.14). This is applied to take account of assets, where in individual DNO or industry experience, there are asset type or make issues leading to material differences in the reliability of the asset. Where a DNO applies a Reliability Modifier to an asset, this shall be described within their own Network Asset Indices Methodology.

In recognition that different inspection and assessment approaches exist between DNOs, there is no requirement for data to be collected to apply all the Condition Inputs specified within the Methodology.

Where DNOs have collected the same condition information for an asset, application of the Methodology shall result in the same Health Score Modifier values being determined for the asset. As there is commonality in the derivation of the Initial Health Score, an asset in any DNO with the same age, type, location, duty and collected condition information will be assigned the same Current Health Score using the Methodology, except where a Reliability Modifier is applied.

The Reliability Modifier is applied at the final stage of the calculation of Current Health Score so that its effect on the Current Health Score can be directly observed.

The Current Health Score is capped at a value of 10.

4.3.3 Current Probability of Failure

For each Asset Category, the relationship between Health Score and PoF is defined within the Methodology. The current PoF is derived from the Current Health Score. This is described in Section 6.

As this relationship and its calibration values are defined, the PoF for assets will be identical where the Health Score and Asset Category are the same. This means that an asset in the same health is considered to have the same likelihood of condition-based failure irrespective of which DNO it is installed in.

4.4 Evaluation of Future Asset Health and Probability of Failure

4.4.1 Overview

The evaluation of future PoF assumes that as an asset ages in the future then its health will deteriorate and consequently the PoF will increase. This is performed by evaluating the forecast future Asset Health for the asset and then deriving the associated PoF.

4.4.2 Future Health Score

The Future Health Score is derived using similar age-based deterioration assumptions to those used in the calculation of the Initial Health Score. It is derived by forecasting forwards from the Current Health Score using a simple exponential relationship as detailed in Section 6.1.10.

The rate of deterioration used for forecasting the Future Health Score is informed by the amount of deterioration in Asset Health that has already been observed for the asset from its current state (i.e. Current Health Score) and age. This is detailed in Section 6.1.8.

The Future Health Score is capped at a value of 15, which is higher than the cap that is applied to the Current Health Score. This is to enable modelling of further deterioration of all assets.

4.4.3 Future Probability of Failure

The calculation of future PoF uses the same relationship between Health Score and PoF that is used in the derivation of the current PoF (see Section 4.3.3 above).

The future PoF for an asset is derived by applying this relationship to the Future Health Score.

4.4.4 Interventions

The reporting of Health Index and Criticality Index requires the effect of investment activities that are aimed at managing the risk of condition-based failures to be evaluated. This is described in Section 6.1.11.

4.5 Evaluation of Consequences of Failure

The Methodology separately evaluates the CoF for each individual asset, in four specified Consequence Categories:-

- i) Financial (incorporating repair & replacement costs);
- ii) Safety;
- iii) Environmental; and
- iv) Network Performance.

A monetised value in \pounds (at 2012/13 prices) is assessed for each of these Consequence Categories. The Overall Consequence of Failure for an asset can therefore be derived by the summation of the CoF in each of these categories. These represent the impact of a failure and the societal cost of that impact.

The methodology for the calculation of CoF in each of the Consequence Categories is based on the use of Reference Costs of Failure. These are defined in Section 7 of the Methodology and are common, using accepted societal costs where available.

For an individual asset, the CoF associated with the asset is driven by the localised situation of the asset. For example, the Network Performance impact will be driven by the number of customers, or amount of load, that is affected by failure of the asset. Similarly, the environmental impact may be dependent on the proximity of the asset to an environmentally sensitive area (such as a watercourse).

To reflect this, the CoF associated with each individual asset is determined by application of asset-specific modifying factors to the appropriate reference cost. These factors represent the variation to the reference costs that results from the localised situation of the individual asset.

The Methodology specifies the asset-specific factors that shall be applied in the derivation of the CoF and also the associated calibration values. As a result, application of the Methodology results in a consistent evaluation of the CoF, across DNOs, which also reflects the localised situation of individual assets.

Section 7 provides details for the methodology for determining CoF. Worked examples of this calculation can be found in Appendix F.

4.6 Assimilating innovation in operation and maintenance

The Methodology has been designed such that it can seamlessly incorporate future innovation in operation and maintenance. Innovation in condition monitoring in particular has been a key driver in the development of health scores across electricity distribution over the last two decades. We envisage continual development and improvement in this field.

There are two key mechanisms that allow new developments to be assimilated:-

i) Much innovation consists of improving ways of understanding existing aspects of DNO assets better. Input factors have therefore been designed so that they are broad enough in description to allow the mapping of new techniques to existing factors. For

example, partial discharge is one of the measured Condition Modifiers in many Asset Categories, but how partial discharge is measured is non-prescribed. As better techniques are developed, they can be used without requiring revision of the Methodology.

ii) Occasionally innovation might produce a new technology which would allow a brandnew Condition Modifier to be used. In such an instance, the agreed change process with Ofgem would be invoked to determine the appropriate weightings for inclusion of the new factor. The Methodology combines multiple Condition Inputs using an approach that ensures that such a change is easy to implement and also that it can be incorporated into the Methodology without causing knock-on effects on the existing set of Modifiers.

Another area of innovation is in the development of new interventions. The process of scoring assets post intervention is described in Appendix C to this document which is in turn governed under the RIGs Annex A [Ref. 1]. Subject to any change in the RIGs, the agreed change process with Ofgem would apply to enable instruction as to how the change should be applied to Health Scores.

5. RISK

5.1 Overview

This section covers the methodology which will be applied by DNOs to calculate the PoF and CoF of an asset, as well as the banding for mapping these outputs to the Health Index and Criticality Index within the Risk Matrix for each Asset Register Category.

5.2 Risk Evaluation

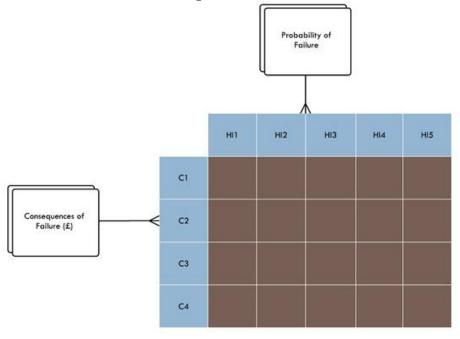
For each asset, the Methodology determines:-

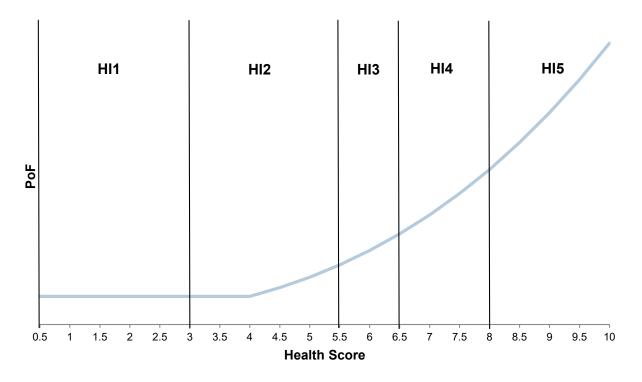
- i) the current PoF (per annum);
- ii) a forecast of the PoF (per annum) in any given future year; and
- iii) the Overall CoF (£).

For either the current year, or any given future year, the risk of failure associated with each individual asset can be evaluated in \pounds (at 2012/13 prices) from the product of the PoF (for the relevant year) and the Overall Consequence of Failure values for that asset. However, the asset-specific actual risk of failure is not used for regulatory reporting. Instead, a typical value of monetised risk, the Risk Index, is derived from the reported Health Index and Criticality Index for each asset. The Risk Index represents the long term risk associated with asset failure and is the present value (\pounds) of the current and future risk associated with a typical asset within the relevant Health Index and Criticality Index Bands¹. This is explained further in Section 5.5.

5.3 Representation of Assets Within Risk Matrices

For the regulatory reporting of Asset Health and criticality, Risk Matrices are used. These show the population of assets within a given Asset Register Category that have the same Health Index and Criticality Index. This is illustrated in Figure 2.




FIGURE 2: RISK REPORTING MATRICES

¹ In CNAIM v1.1, the Risk Index was related to the risk of failure in a given year and did not consider the value of risk associated with future years within the monetised risk measure.

The Methodology evaluates the current health of an asset using a Health Score with a continuous scale between 0.5 and 10 (this scale is extended up to 15 for the forecasting of future health). The relationship between this Health Score and PoF is defined by the Methodology and is explained in Section 6. The Health Index subsequently groups assets into one of the five bandings (HI1 to HI5) based on their Health Score as shown in Table *5*.

Health Index Band	Health Index Banding Criteria	
	Lower Limit of Health Score	Upper Limit of Health Score
HI1	≥0.5	<3
HI2	≥3	<5.5
HI3	≥5.5	<6.5
HI4	≥6.5	<8
HI5	≥8	≤15

These Health Index Bands are subsequently translated to PoF values. Figure 3 illustrates where
the Health Index Bands lie on a typical Asset Health / PoF curve.

FIGURE 3: HI BANDING

The Criticality Index groups assets into bandings based on their CoF. Each asset shall be placed in a Criticality Index Band, based on the relative magnitude of the Overall CoF of the asset, compared to the Reference Costs of Failure that are used in the determination of CoF for all assets in the Asset Register Category. The Reference Costs of Failure are defined in Section 7 of the Methodology and are common for all DNOs.

There are four Criticality Index Bands:-

- i) C1 'Low' criticality
- ii) C2 'Average' criticality

- iii) C3 'High' criticality
- iv) C4 'Very High' criticality

The 'C2' Criticality Index Band represents assets where the Overall CoF are approximately the same as the Reference Costs of Failure for the Asset Register Category.

For each Asset Register Category, the Criticality Index Banding Criteria are expressed as a percentage of the Reference Costs of Failure for the Asset Register Category. These are shown in Table 6.

TABLE 6: CRITICALITY INDEX BANDING CRITERIA		
Criticality	Criticality Index Banding Criteria	
Index Band	Lower Limit of Overall CoF (as % of Reference Costs of Failure for the Asset Register Category)	Upper Limit of Overall CoF (as % of Reference Costs of Failure for the Asset Register Category)
C1	-	< 75%
C2	≥ 75%	< 125%
C3	≥ 125%	< 200%
C4	≥ 200%	-

Using the approach outlined above, the outputs from the Methodology can facilitate population of Risk Matrices for the regulatory reporting of the Health Index and Criticality Index for each asset.

5.4 Evaluating In-Year Risk Using Risk Matrices

By assigning:-

- i) a typical value of PoF (per annum) to all assets within the same Health Index Band (for a given Asset Register Category); and
- ii) a typical value of Consequence of Failure to all assets within the same Criticality Index Band (for a given Asset Register Category)

it is possible for the risk of failure (per annum) associated with each asset to be approximated by reference to its position within the Risk Matrix. This provides an evaluation of the 'in-year' risk of failure of an asset, enabling the asset risk at a point in time to be quantified.

The typical value of PoF is calculated from a typical Health Score for each Health Index Band using the relationship defined in Section 6.1.1 of the Methodology. Table 7 provides the input data for the derivation of typical PoF values.

Health Index Band	Health Score to be used to derive Typical PoF
HI1	1.23
HI2	4.25
HI3	6.00
HI4	7.25
HI5	9.00

TABLE 7: HEALTH SCORE USED TO DERIVE TYPICAL POF

For the HI2 – HI4 bands, the use of the midpoint Health Score to derive the Average PoF produces a reasonable approximation of the average value that would be observed for a uniform distribution of assets within that Health Index Band. The typical Health Scores for the HI1 and HI5 bands take account of the expected typical distribution of assets within these bands.

The resulting typical PoF weightings for each Health Index Band, for each Asset Register Category, can be found in Section E.2 of Appendix E.

For each Criticality Index Band, the typical value of Consequence of Failure is determined by application of the percentage factors shown in Table 8, below, to the Reference Costs of Failure (see Section 7 of the Methodology) for the relevant Asset Register Category.

TABLE 8: PERCENTAGE FACTORS USED TO DERIVE TYPICAL CONSEQUENCES OF FAILURE				

Criticality Index Band	Percentage Factor to Be Applied to The Reference Costs of Failure
C1	70%
C2	100%
C3	150%
C4	250%

The resulting typical values of Consequence of Failure for each Criticality Index Band, for each Asset Register Category, can be found in Section E.1 of Appendix E.

The 'in-year' risk of failure of an asset (£ at 2012/13 prices) is the product of the typical PoF for its Health Index Band and the typical Consequences of Failure for its Criticality Band. The resulting value of 'in-year' risk of failure for each Health Index/ Criticality Index combination, for each Asset Register Category, can be found in Section E.2 of Appendix E.

During RIIO-ED1, 'in-year' risk was used in regulatory reporting for defining targets for, and measuring performance, against Network Asset Secondary Deliverables.

For RIIO-ED2, the measure of risk used for regulatory processes shall be based on consideration of the future risk associated with an asset and consequently a long term measure of risk shall be used for defining targets and measuring delivery against the RIIO-ED2 NARM outputs. This is described in Section 5.5 of the Methodology.

5.5 Evaluating Long Term Risk Using Risk Matrices

DNOs' investment decisions do not just address the asset risk in the current year, but also address the cumulative risk across all future years. It is therefore important to evaluate the asset risk that is forecasted for future years when considering the justification for investment decisions that are aimed at managing the condition-based risk associated with assets. This enables the impact of interventions upon the long term risk of the asset to be considered against the cost of intervention. For the cumulative risk over future years to be compared with the cost of intervention, it is necessary to quantify the future risk in terms of its present value (i.e. in discounted terms). The methodology calculates this risk which is termed as the Long Term Risk.

Recognising that the risk in future years needs to be considered when evaluating the outcome of interventions, for RIIO-ED2, a long term measure of risk shall be used to define the targets for

the NARM and measure delivery against these targets. The Long Term Risk measure shall therefore provide the Risk Index for regulatory reporting.

The Methodology can be used to determine the risk associated with an asset in the current year and forecast how the risk in each subsequent individual future year will be affected by degradation of the asset. This is achieved by considering how PoF will change in future years over a given period. The calculation of PoF, including PoF in each future year, is described in Section 6 of the Methodology. A discount factor can be applied to the risk calculated for each future year, so that the risk in each year can be considered at its present value. This can then be summated for each year across the future period under consideration to determine the present value of future (whole life) risk in the period.

By treating Consequence of Failure as a constant, the present value of future long term risk can be expressed as shown in EQ. 1:-

Present value of future risk_{0-n} = $\sum_{i=1}^{n} (PoF_i \times (1+r))^{-1}$

Where:

EQ. 1

- *i* = number of years subsequent to current year (where current year is year 0)
- *n* = *number* of future years considered;
 - PoF_i = the expected number of functional failures in year i;
 - CoF = the Consequence of Failure (£ at 2012/13 prices); and
- *r* is the discount rate.

It is appropriate when considering future risk of an asset, to consider the Consequence of Failure to be a constant, as changes to the factors that influence the Consequence of Failure, for an individual asset, are infrequent and cannot be reasonably predicted.

This equation separates the present value of future long term risk into two components:-

- Consequence of Failure; and
- a 'cumulative discounted PoF' term, which represents the POF and the financial discounting elements of the equation for present value of future long term risk (EQ. 2) such that:-

Cumulative discounted
$$PoF_{0-n} = \left[\sum_{i=0}^{n} (PoF_i \times (1+r)^{-i})\right]$$

EQ. 2

By assigning:-

- i) a typical value of 'cumulative discounted PoF' to all assets within the same Health Index Band (for a given Asset Register Category); and
- ii) a typical value of Consequence of Failure to all assets within the same Criticality Index Band (for a given Asset Register Category),

it is possible for the Long Term Risk associated with each asset to be approximated by reference to its position within the Risk Matrix. The Risk Index for each Health Index / Criticality Index Band is the product of the typical 'cumulative discounted PoF' for the Health Index Band and typical Consequence of Failure for the Criticality Index Band.

For each Asset Register Category, a typical value of 'cumulative discounted PoF' can be assigned to each Health Index Band by considering all assets within the same Health Index Band (for the given Asset Register Category) to have:-

- i) the same typical value of Health Score for the current year (year 0); and
- ii) the same typical value of Forecast Ageing Rate.

From the typical value of current year Health Score and typical Forecast Ageing Rate, the Future Health Score for each future year can be evaluated as described in Section 6.1.10 of the Methodology and the associated value of PoF determined using the relationship defined in Section 6.1.1 of the Methodology.

The typical value of current year Health Score for each Health Index Band (for all Asset Register Categories) shall be the same value as shown in Table 7 in Section 5.4 for the determination of Typical PoF weightings.

The typical Forecast Ageing Rates for each Asset Register Category, which are used in the determination of the Future Health Scores for each future year, are shown in Section E.3 of Appendix E. These are the same as the Initial Ageing Rate that would be determined, using the approach shown in Section 6.1.5 of the Methodology, if the Expected Life of the asset was considered as being the same as a typical Normal Expected Life for the Asset Register Category.

In determining the 'cumulative discounted PoF', the current year PoF and future PoF for a period of 32 years shall be considered. A discount rate of 3.5% shall be applied for each of the first 30 years and a rate of 3.0% for each year thereafter. This discounting rate is consistent with the Social Time Preference Rate in the HM Treasury Green Book (2018) [Ref. 11] and Ofgem CBA methodology for RIIO-ED2.

For each Asset Register Category, the discounted PoF for each year, of the 32 year period, is summated to create a typical 'cumulative discounted PoF' for each Health Index Band. The resulting values of typical 'cumulative discounted PoF' are shown in Section E.3 of Appendix E. These are the values used to multiply out the Risk Matrices.

For each Criticality Index Band, the typical value of Consequence of Failure is determined by application of the percentage factors to the Reference Costs of Failure, as described in Section 5.4 of the Methodology. The resulting typical values of Consequence of Failure for each Criticality Index Band, for each Asset Register Category, can be found in Section E.1 of Appendix E. These are the values used to multiply out the Risk Matrices.

The Risk Index (£ at 2012/13 prices) is determined from the product of the relevant typical 'cumulative discounted PoF' and typical Consequences of Failure for each Health Index Band/ Criticality Index Band combination, for each Asset Register Category, and can be found in Section E.3 of Appendix E.

The monetisation of risk is consistent across all Asset Register Categories and therefore enables risk trading within and across Asset Register Categories.

6. PROBABILITY OF FAILURE

PoF Calculation (General) 6.1

6.1.1 Overview

The Health Index (HI) is derived from the Health Score and PoF. The PoF of an asset is a function of the asset's Health Score, with the Health Score being a function of Normal Expected Life, location, duty, reliability, observed condition and measured condition.

For the majority of assets, a single Health Score is calculated, which is then converted into a PoF. However, for HV, EHV and 132kV Transformers and steel Towers, it is necessary to calculate a Health Score for each component and then combine these into an overall Health Score. These multi-component assets are special cases which are covered in more detail in Sections 6.2 and 6.3. Figure 4 shows the process to be followed to calculate the PoF of an asset (or component):-

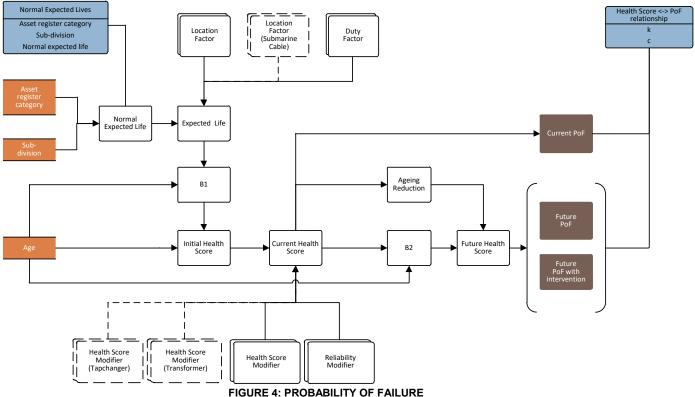


FIGURE 4: PROBABILITY OF FAILURE

The PoF per annum shall be calculated using the cubic curve shown in EQ. 3. This is based on the first three terms of the Taylor series for an exponential function. This implementation has the benefit of being able to describe a situation where the PoF rises more rapidly as asset health degrades, but at a more controlled rate than a full exponential function would describe.

$$PoF = K \times \left[1 + (C \times H) + \frac{(C \times H)^2}{2!} + \frac{(C \times H)^3}{3!} \right]$$

EQ. 3

Where:

- H is a variable equal to Health Score (Current or Future), unless Health Score \leq 4 then H = 4
- K and C are constants

The constants and variables in the above equation are described in Section 6.1.2.

6.1.2 K-Value, C-Value and Constants in PoF

A generic and common PoF curve as described by EQ. 3 is used to define the relationship between asset Health Score and PoF. The curve is one commonly used in reliability theory. It shows constant PoF for low values of Health Score and an exponential increase in PoF for higher values of Health Score, representing where increasing health degradation results in an escalating likelihood of failure. The shape of a typical PoF curve can be seen in Figure 3.

For a common curve, the parameters used to construct the curve need to be common. The common parameters are the C-Value that defines the shape of the curve, the K-Value that scales the PoF to a failure rate, and the Health Score limit at which there is a transition from constant PoF to an exponential relationship. The values for the C-Values, the K-Values and the constant Health Score limit are shown in Table 21 in Appendix B.

The C-Value is the same for all Asset Categories and has been selected such that the PoF for an asset in the worst state of health is ten times higher than the PoF of a new asset.

The Health Score limit represents the point at which there starts to be a direct relationship between the Health Score and an increasing PoF. The PoF associated with Health Scores below this limit relate to installation issues or random events.

The K-Value for each Asset Category has been derived by consideration of:-

- i) the observed number of Functional Failures per annum, considering the number of failures in each of the three failure modes that are identified in Appendix A (i.e. Incipient Failures, Degraded Failures and Catastrophic Failures for each Asset Category);
- ii) the Health Index distribution for the asset population; and
- iii) volumes of assets within the population.

By calibrating K using the overall number of Functional Failures across all the failure modes, the resulting PoF represents the combined PoF for all considered failure modes.

The calibration of K has been undertaken using data representing the national population of assets and ensures that in each Asset Category the total GB expected number of Functional Failures, derived from the relative PoF contribution of every asset in the GB Health Index distribution, matches the number of GB Functional Failures.

For linear assets (Cables and Tower Conductor) the K-Value was calculated using the GB number of Functional Failures per kilometre per annum. The PoF reported for these Asset Categories is therefore the PoF per km per annum. The number of kilometres reported per Health Index Band is the sum of the length of the assets falling within that band.

The national failure rate figures used were the sum of all DNO functional failures (five-year annualised average) in accordance with the Condition-based Functional Failure definition. These are shown in Appendix A.

6.1.3 Normal Expected Life

The Normal Expected Life depends on the Asset Register Category and its sub-category. It is defined as the time (in years) in an asset's life when the first significant signs of deterioration would be expected. This corresponds to a Health Score of 5.5. The value is specified in the Normal Expected Lives calibration table (Table 20, Appendix B) and is expressed in years.

6.1.4 Expected Life

Expected Life is derived from Normal Expected Life, considering two degradation factors: Location Factor (which represents the effects of the surrounding environment on the asset) and Duty Factor (which represents any additional ageing due to the way in which the asset is being used). Expected Life is calculated using EQ. 4.

Location and Duty Factors are

described in more detail in Sections 6.4 - 6.6.

6.1.5 β₁ (Initial Ageing Rate)

The rate of change of the health of a distribution asset is modelled exponentially, as it is assumed that the processes involved as the asset deteriorates (e.g. corrosion, oil oxidation, insulation breakdown, etc.) are accelerated by the products of the deterioration process.

The Ageing Rate of the asset is determined from the natural logarithm of the asset's Health Score when new and the Health Score that corresponds to the Expected Life of the asset, using EQ. 5.

Where:

- Hnew is the Health Score of a new asset, equal to 0.5
- *H*_{Expected Life} is the Health Score of the asset when it reaches its Expected Life, equal to 5.5
- Expected Life is described in Section 6.1.4

6.1.6 Initial Health Score

The Initial Health Score is obtained by defining the generic relationship between Asset Health and age using the Expected Life of the asset.

Initial Health Score = $H_{new} \times e^{(\beta_1 \times age)}$

Where:

- *H_{new}* is the Health Score of a new asset, equal to 0.5
- Initial Health Score is capped at a value of 5.5
- β_1 is the initial Ageing Rate as described is Section 6.1.5
- age is the current age of the asset in years

EQ. 6

EQ. 5

EQ. 4

This relationship gives an initial estimate of Asset Health but does not take into account any actual health measurement or assessment that may have been carried out. This stage provides an initial age-based indication of health up to a maximum Health Score of 5.5, which needs to be modified in the next stage to take account of available data regarding the health of the asset.

6.1.7 Current Health Score

The Initial Health Score is modified according to available data using the Health Score Modifier and, where appropriate, a Reliability Modifier (see Section 6.14).

The Health Score Modifier consists of three components:-

- i) Health Score Factor, which determines how the Initial Health Score is to be modified;
- ii) Health Score Cap, which specifies the maximum value of Current Health Score (used in situations where a good result from a condition inspection or measurement implies that the Health Score should be no more than the specified value); and
- iii) Health Score Collar, which specifies the minimum value of Current Health Score (used in situations where a poor result from a condition inspection or measurement implies that the Health Score should be at least the specified value).

The Reliability Modifier may consist of two components:-

- i) A Reliability Factor; and
- ii) A Reliability Collar.

The Current Health Score is calculated initially as follows:-

Current Health Score = Initial Health Score × Health Score Factor × Reliability Factor

EQ. 7

The Current Health Score is then compared with Health Score Cap as follows:-

IF Current Health Score > Health Score Cap THEN Current Health Score = Health Score Cap

Where:

Current Health Score is capped at 10

The Current Health Score is then compared with Health Score Collar as follows:-

IF Current Health Score < MAX (Health Score Collar, Reliability Collar) **THEN** Current Health Score = MAX (Health Score Collar, Reliability Collar)

EQ. 9

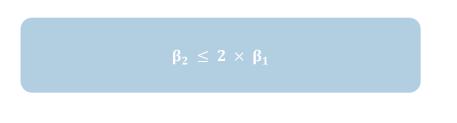
EQ. 8

Note that the order of calculation is important; the calculation must be done in the order specified to ensure that poor condition measurements override good ones; i.e. the Current Health Score

must be compared with the Health Score Cap and assigned a result before comparing this result to the Health Score Collar.

Typically, the Health Score Collar is 0.5 and Health Score Cap is 10, implying no overriding of the Health Score. However, in some instances these parameters are set to other values in the Health Score Modifier calibration tables. These overriding values are shown in Table 35 to Table 202 and Table 207 in Appendix B.

6.1.8 β₂ (Forecast Ageing Rate)


In order to forecast a Future Health Score from the Current Health Score, the Ageing Rate needs to be re-calculated so that the effects of the Health Score Modifier and Reliability Modifier are taken into account. This is undertaken so that the forecast ageing reflects the Ageing Rate implied by the asset's actual condition. For assets where no ageing has been observed (i.e. the Current Health Score is 0.5) no re-calculation of the Ageing Rate is performed.

The Forecast Ageing Rate β_2 is derived from the Current Health Score and the current age of the asset using EQ. 10 when the Current Health Score > 0.5. Where the Current Health Score = 0.5, $\beta_2 = \beta_1$.

Where:

• Age is the current age of the asset (i.e. the age used in the calculation of the Initial Health Score)

 β_2 is capped such that:-

 β_2 is capped to prevent unrealistically high rates of deterioration being applied to relatively new assets where reliability issues have been identified early on in their life.

6.1.9 Ageing Reduction Factor

The use of the exponential curve results in an escalating acceleration effect once assets reach a high Health Score. For assets that are approaching end of life, this can result in a run-away effect in the forecast future PoF, which would not reflect the deterioration that would be observed in real life.

The cause of the runaway effect is due to the imperfect match of the selected curve once the asset reaches high values of health and hence resultant PoF. To minimise the potential for overstatement of the forecast future PoF, an Ageing Reduction Factor is introduced to modify the asset's rate of deterioration. This slows down the Ageing Rate of the asset by flattening the exponential curve especially (although not exclusively) where the Health Score is greater than 5.5.

EQ. 10

EQ. 11

In young assets of unproven reliability, there may be a higher PoF when compared to assets of a higher age. Therefore, as an asset has reached the higher age with no identified issues, the probability is that it will continue to provide good service and hence its life expectancy is longer than the younger asset. Therefore, the old asset's PoF can be reduced in relative terms from the value calculated.

The ageing reduction technique as described above is used to reduce the forecast increase in PoF with time for assets where the Current Health Score represents any significant level of degradation. The ageing reduction factor acts by reducing the original ageing factor. This practice is in keeping with the common use by engineers of P-F interval reliability concepts [Ref. 2] which set:-

- i) P as the point where a potential failure can be detected; and
- ii) F as where the functional failure occurs.

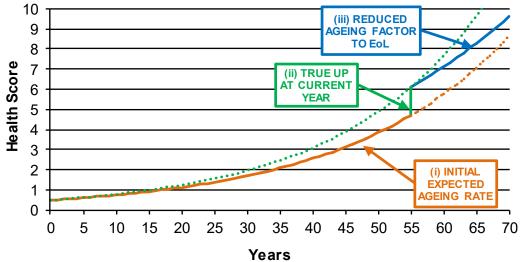
In such concepts, a curve is drawn between the two points, P and F, to produce a forecast of time to failure and the reduction effect is capped so that the accelerated ageing that occurs as the asset approaches failure is correctly reflected.

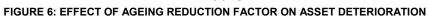
In the Methodology, the Ageing Reduction Factor applied will vary, depending on the Current Health Score for the asset:-

- i) for assets where the Current Health Score is greater than 5.5, the Ageing Reduction Factor is set to its maximum permissible value; and
- ii) for assets where the Current Health Score is less than 2, the Ageing Reduction Factor is set to unity.

In order to prevent low Health Score assets deteriorating more quickly than high Health Score assets when forecasting, there must be no significant step change in the factor value. The Ageing Reduction Factor therefore varies linearly between unity and its maximum permissible value, for Health Scores between 2 and 5.5.

The maximum permissible value of the Ageing Reduction Factor is set to 1.5.


The Ageing Reduction Factor calibration table can be seen in Table 216 in Appendix B and is illustrated in Figure 5.



The effects of the changes to the ageing assumptions that arise from re-calculation of the Ageing Rate for forecasting future health (as described in Section 6.1.8) and the application of an Ageing Reduction Factor are shown in Figure 6. This shows three deterioration curves based on:-

- i) the initial Ageing Rate, β_1 ;
- ii) the "trued-up" Ageing Rate which would have been necessary for the asset to be in its current condition; and

iii) the application of an Ageing Reduction Factor.

6.1.10 Future Health Score - Deterioration

The Future Health Score is calculated using the same exponential based methodology as the Initial Health Score.

EQ. 12

Where:

- *t* is the number of future years;
- Current Health Score is as described in Section 6.1.7;
- β_2 is the Forecast Ageing Rate as described in Section 6.1.8;
- *r* is the Ageing Reduction Factor as described in Section 6.1.9; and
- Future Health Score is capped at 15.

6.1.11 Interventions

Interventions are activities that are undertaken to manage the risk of condition-based failure. In RIIO-ED1, DNOs have Network Asset Secondary Deliverables that relate to the improvement in risk that is delivered by Asset Replacement, as well as some Refurbishment activities. Such activities are primarily aimed at managing risk by reducing the PoF.

The effect of these activities is calculated by modifying the input data used in the Methodology. This approach shall be used for the calculation of either the Current Health Score or Future Health Score.

For Asset Replacement interventions, this is simply a recalculation of Asset Health and Criticality (and hence risk) taking account of the changes in the asset population that have resulted from the Intervention (i.e. removal of assets and the addition of new assets).

For Refurbishment interventions, the Asset Health and Criticality are recalculated using revised input data for the asset that is subject to the Refurbishment activity. This revised input data should take account of the change in input data that has resulted from the Refurbishment activity e.g. changes to the Health Score Modifier to reflect the observed or measured condition following completion of the Refurbishment.

Only certain Refurbishment activities contribute to the delivery of the Network Asset Secondary Deliverables. These are defined in Ofgem's RIIO-ED1 Regulatory Instructions and Guidance – Annex A.

Appendix C identifies these Refurbishment activities and also the input data that should be reevaluated in order to account for the improvement in risk delivered by such activity.

6.2 **PoF Calculation (HV, EHV and 132kV Transformers)**

The PoF for HV Transformers, EHV Transformers (33kV & 66kV Transformers) and 132kV Transformers is derived by separate consideration of the health of two distinct subcomponents:-

- i) the main transformer; and
- ii) the tapchanger (EHV and 132kV Transformers only).

This recognises the degree of independence between the health of these components.

The Health Score for the overall transformer asset is derived from the combination of the Health Scores for both of these components.

Health Scores for the main transformer and tapchanger components are separately determined, using broadly the same approach as outlined in Section 6.1. This is summarised below:-

i) A separate Initial Health Score is calculated for the main transformer subcomponent and the tapchanger subcomponent, using EQ. 6, as described in Section 6.1.6. For each component different Normal Expected Lives and age information shall be used. However, the same Location Factor is applied to both the main transformer and the tapchanger but they each have a different duty factor. The Normal Expected Life of the tapchanger subcomponent and main transformer subcomponent are shown in Table 20 in Appendix B.

To calculate the Initial Health Scores using EQ. 6:-

• for the main transformer, the Normal Expected Life for a transformer is used and the age is taken as being the age of the main transformer component;

• for the tapchanger, the Normal Expected Life for a tapchanger is used and the age is taken as being the age of the tapchanger component.

Where the age of the tapchanger and the age of the main transformer component are not separately known, it is assumed that both components have the age that is recorded for the overall transformer asset.

ii) Separate Health Score Modifiers are calculated for both the main transformer and the tapchanger components. The calculation of these Health Score Modifiers is discussed in Section 6.8.

For both the main transformer and tapchanger components, the Health Score Modifier is derived using an Observed Condition Modifier, a Measured Condition Modifier and an Oil Test Modifier. The determination of these Modifiers is described in Sections 6.9, 6.10, 6.11.

For the main transformer subcomponent, a DGA Test Modifier and FFA Test Modifier are also used in addition to the Observed Condition Modifier, Measured Condition Modifier and Oil Test Modifier. These additional Modifiers are described in Sections 6.12 and 6.13

- iii) Separate Current Health Scores are calculated for both components using the Health Score Modifier and the Initial Health Score calculated for the relevant component, e.g. the Health Score Modifier for the tapchanger component is applied to the Initial Health Score for the tapchanger component to calculate the Current Health Score for the tapchanger component.
- iv) A forecast Ageing Rate, β_2 , is separately calculated for each component, using the approach described in Section 6.1.8. For each component, the age used in the calculation of β_2 is the same age that was used in the calculation of the Initial Health Score.
- v) The Future Health Score is calculated for each component using EQ. 12, as described in Section 6.1.10. For each component the Current Health Score and value of β_2 , relating to that component, is used in the determination of the Future Health Score.

The Current Health Score of the overall transformer asset is taken as the maximum of the Current Health Score of the main transformer component and the Current Health Score of the tapchanger component.

Similarly, the Future Health Score of the overall transformer asset is taken as the maximum of the Future Health Score of the main transformer component and the Future Health Score of the tapchanger component.

The PoF for the overall transformer asset is determined by application of EQ. 3 (Section 6.1.1) to the overall Health Score (i.e. the maximum Health Score of the subcomponents).

6.3 **PoF Calculation (Steel Towers)**

Steel Towers are made up of individual steel members bolted together to form a lattice arrangement above ground. Tower foundations are the interlinking component between the support and the ground (soil and/or rock).

The life of a steel Tower is primarily dependent on the rate of deterioration of this steelwork both above and below ground.

New steelwork is protected from corrosion by zinc galvanising. Under normal circumstances galvanising would be expected to provide protection against the onset of corrosion, for the steelwork above ground, for a period of up to 30 years.

A paint system would normally be applied to the steelwork above ground, in order to provide a secondary form of protection against corrosion. The paintwork, itself, will deteriorate over time (typically providing protection for up to 20 years) and will require reapplication in order to maintain its protective function. The first application of a paint system to a Tower normally takes place after 30 years, once the zinc galvanising has expired.

For Towers, once corrosion has set in the intervention requirement changes considerably from low cost piecemeal steel member replacement and the application of a protective paint system, to much more expensive full Tower replacement. Therefore, with regards to the above ground steelwork, the typical strategy adopted by DNOs is to paint/refurbish before significant corrosion sets in. The typical effect of such a strategy on the Health Score of a Tower, through its life, is illustrated in Figure 7.

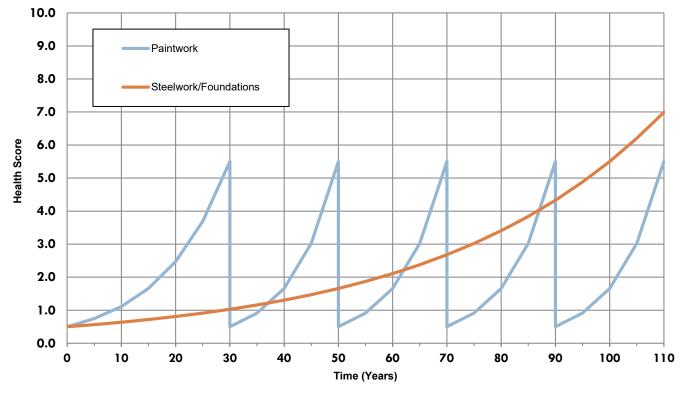


FIGURE 7: STEEL TOWER HEALTH SCORE

Therefore, within this framework the overall life cycle (Health Score) for a steel Tower is defined as a function of three discrete elements of the Tower:-

i) the paintwork;

- ii) the steelwork; and
- iii) the foundations.

Health Scores for each of these three components are separately determined, using broadly the same approach as outlined in Section 6.1. This is summarised below:-

- i) A separate Initial Health Score is calculated for each of the three components, using EQ. 6, as described in Section 6.1.6. For each component different Normal Expected Lives and age information shall be used. However, the same Location and Duty Factors are applied to all three components. The Normal Expected Life of the paint system (rather than the Tower), foundations and steelwork are shown in Table 20 in Appendix B. To calculate the Initial Health Scores using EQ. 6:-
 - for the Tower steelwork: The Normal Expected Life of steelwork shall be used²;
 - for the paintwork:
 - if the Tower is unpainted: The Normal Expected Life of the galvanising is used, and the age is taken as being the age of the Tower steelwork;
 - if the Tower is painted: The Normal Expected Life of paint is used, and the age is taken as time that has elapsed since the Tower was last painted;
 - for the Tower foundation: The Normal Expected Life of the Tower foundation is used, and the age is taken as being the age of the foundation.

Where the age of the Tower steelwork and the age of the Tower foundation are not separately known, it is assumed that both the steelwork and foundation have the age that is recorded for the overall Tower.

- ii) Separate Health Score Modifiers are calculated for each of the three components.
- iii) Separate Current Health Scores are calculated for each of the three components using the Health Score Modifier and the Initial Health Score calculated for the relevant component, e.g. the Health Score Modifier for the paintwork component is applied to the Initial Health Score for the paintwork component to calculate the Current Health Score for the paintwork component. The Current Health Score for the paintwork component is capped at 6.4 to reflect the limited effect of paintwork, alone, on the overall health of a tower.
- iv) A forecast Ageing Rate, β_2 is separately calculated for each of the three components, using the approach described in Section 6.1.8. For each component, the age used in the calculation of β_2 is the same age that was used in the calculation of the Initial Health Score.
- v) A Future Health Score is calculated for each of the three components using EQ. 12, as described in Section 6.1.10. For each component the Current Health Score and value of β_2 , relating to that component, shall be used in the determination of the Future

² The primary age of the Tower steelwork will be that of the Tower itself, accepting that some of the steelwork may have been replaced piecemeal in later years.

Health Score. The Future Health Score for the paintwork component is capped at 6.4 to reflect the limited effect of paintwork, alone, on the overall health of a tower.

The Current Health Score of the Tower is taken as the maximum of the Current Health Score of the steelwork, the Current Health Score of the paintwork and the Current Health Score of the foundations. As Paintwork condition on its own does not instigate replacement of a steel tower, a cap of 6.4 is applied to the Current Health Score of the paintwork component (as described in (iii) above). This has been done to match the impact and importance of the paintwork condition on the overall score of a Tower to reality.

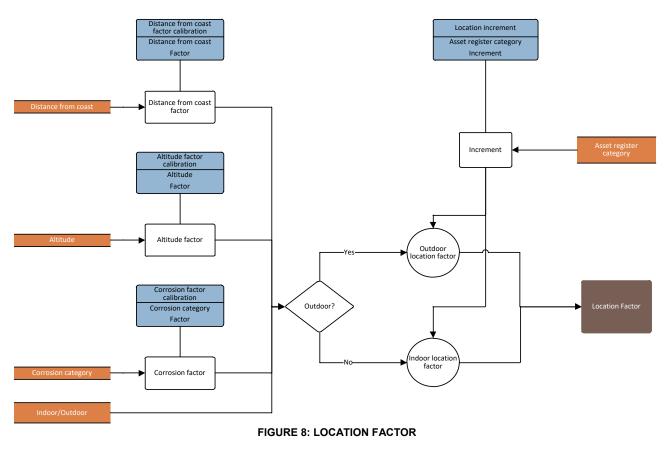
Similarly, the Future Health Score of the Tower is taken as the maximum of the Future Health Score of the steelwork, the Future Health Score of the paintwork and the Future Health Score of the foundations. Again, the effect of the paintwork component upon the Future Health Score of the Tower is limited by application of a cap on the value of the Future Health Score of the paintwork (as described in (v) above).

The PoF for the overall Tower is determined by application of EQ. 3 (Section 6.1.1) to the overall Health Score (i.e. the maximum Health Score across the three subcomponents).

6.4 Location Factor (General)

6.4.1 Overview

The Expected Life of an asset is affected by the environment in which the asset is installed. For example, assets exposed to higher levels of moisture or pollution may be expected to degrade quicker than assets of the same type exposed to lower levels of moisture or pollution. The levels of exposure will depend on the location of the asset and also whether or not it is installed within an enclosure that affords protection from the weather.


This effect is recognised by the use of an asset-specific Location Factor in the determination of the Expected Life for individual assets. For all Asset Categories, except LV UGB and Cable, this Factor is influenced by:-

- i) distance from coast;
- ii) altitude;
- iii) corrosion category; and
- iv) environment (indoor / outdoor).

Where it is not known whether an asset is located indoor or outdoor, a default assumption based on the Asset Register Category shall be applied as per Table 26 in Appendix B.

Different factors are considered in the derivation of an asset-specific Location Factor for submarine cable assets. These are explained in Section 6.5.

For LV UGB assets and all non-submarine cable assets (i.e. cables installed on land), a Location Factor of 1 is assigned to all assets.

6.4.2 Distance from Coast Factor

The Distance from Coast Factor is determined based on the distance of the asset (or its substation location) from the coast, measured in km. The Distance from Coast Factor is applied as shown in Table 22 in Appendix B.

6.4.3 Altitude Factor

An Altitude Factor is determined based on the altitude of the asset (or its substation location, measured in metres). The derivation of Altitude Factor is based on a look up table using bandings of altitude. The Altitude Factor is applied as shown in Table 23 in Appendix B.

6.4.4 Corrosion Factor

A Corrosion Factor is determined based on the Corrosion Category Index (1-5) for the location of the asset.[Ref.10] The Corrosion Factor is applied as shown in Table 24 in Appendix B.

6.4.5 Determining the Location Factor for assets in an outdoor environment

Where an asset is installed in an outdoor environment, the Location Factor is determined as follows:-

i) If the maximum of the Distance from Coast Factor, Altitude Factor and Corrosion Factor is greater than 1:-

EQ. 13

Where:


- INC is the increment constant for the asset type (shown in Table 25)
- ii) If the maximum of the Distance from Coast Factor, Altitude Factor and Corrosion Factor is not greater than 1:-

6.4.6 Determining the Location Factor for assets in an indoor environment

Where an asset is installed in an indoor environment, the Location Factor is determined as follows:-

i) If the maximum of the Distance from Coast Factor, Altitude Factor and Corrosion Factor is greater than 1:-

EQ. 15

Where:

- INC is the increment constant for the asset type (shown in Table 25)
- ii) If the maximum of the Distance from Coast Factor, Altitude Factor and Corrosion Factor is not greater than 1:-

iii) Steps (i) and (ii) are the same as for an asset in an outdoor environment. This additional step recognises the shielding effect of the indoor environment on the asset in question. The Location Factor is calculated from the Initial Location Factor using EQ.
 17.

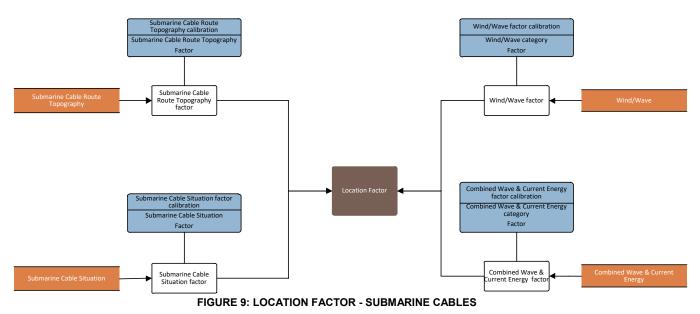
Location Factor

= 0.25 × (Initial Location Factor – Minimum Initial Location Factor) + Minimum Initial Location Factor

EQ. 17

Where:

• Minimum Initial Location Factor is the value of Initial Location Factor that would be determined if all location factors (i.e. Distance From Coast Factor, Altitude Factor and Corrosion Factor) were at their minimum possible value for the asset type, from the calibration Table 22 to Table 24.


6.5 Location Factor (Submarine Cables)

6.5.1 Overview

The Location Factor for Submarine Cable is made up of four factor inputs:-

- i) Submarine Cable Route Topography Factor;
- ii) Situation Factor;
- iii) Wind/Wave Factor; and
- iv) Combined Wave & Current Energy Factor.

DNO Common Network Asset Indices Methodology

6.5.2 Submarine Cable Route Topography Factor

The route topography factor considers the nature of the cable route in which the submarine cable has been laid. This considers the seabed makeup, landscape and the potential for cable to be suspended above the seabed.

The value for this factor is applied as shown in Table 27 in Appendix B.

6.5.3 Submarine Cable Situation Factor

The Submarine Cable Situation factor takes into account its installed situation: laid on bed, covered and buried.

The value for this factor is applied as shown in Table 28 in Appendix B.

6.5.4 Wind/Wave Factor

The wind and wave environment that submarine cables are subjected to has been identified as directly affecting the severity of mechanical movement (action) on the shore ends. This is captured by the wind/wave factor.

The value for this factor is applied as shown in Table 29 in Appendix B.

6.5.5 Combined Wave & Current Energy Factor

The rate at which fretting (abrasion of the cable armour) takes place is heavily dependent on the amount of energy exerted on both the cable and the seabed due to waves, tidal currents, or their combined effects. The combined wave and current energy factor takes this into account.

The value for this factor is applied as shown in Table 30 in Appendix B.

6.5.6 Determining the Location Factor for Submarine Cables

If the maximum of the Submarine Cable Route Topography Factor, Situation Factor, Wind/Wave Factor, Combined Wave & Current Energy Factor is greater than 1:-

Location Factor = MAX(Submarine Cable Route Topography Factor, Situation Factor, Wind /Wave Factor, Combined Wave & Current Energy Factor) + $(((COUNT of factors greater than 1) - 1) \times INC)$

EQ. 18

Where:

• INC is the increment constant for the asset type (Table 25, Appendix B)

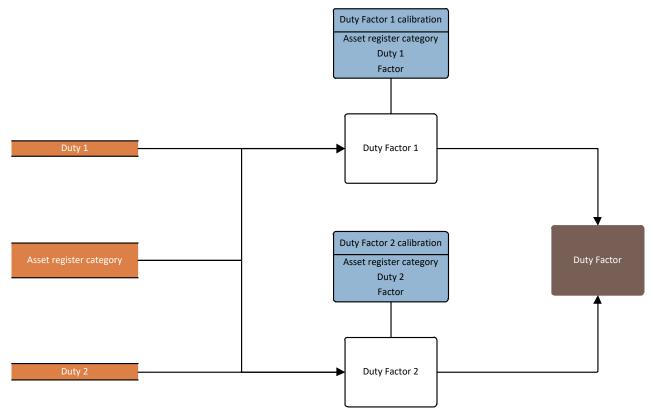
If the maximum of the Submarine Cable Route Topography Factor, Situation Factor, Wind/Wave Factor, Combined Wave & Current Energy Factor is not greater than 1:-

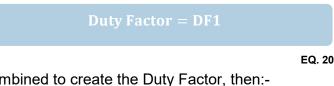
Location Factor = MIN(Submarine Cable Route Topography Factor, Situation Factor, Wind /Wave Factor, Combined Wave & Current Energy Factor)

EQ. 19

6.6 Duty Factor

The Expected Life of an asset varies depending on the duty to which it is subjected.




FIGURE 10: DUTY FACTOR

For electrical assets, the duty factor is a function of loading, number of operations, design voltage and operating voltage. Table 8 shows how these factors are to be applied to the different Asset Categories:

TABLE 8: DUTY FACTOR METHODOLOGY

Asset Category	Duty Factor 1 (DF1)	Duty Factor 2 (DF2)
Cables	% Utilisation	Operating Voltage ÷ Design Voltage
Poles	No asset-specific Duty Factor 1 (i.e. DF1 = 1)	N/A
LV UGB	No asset-specific Duty Factor 1 (i.e. DF1 = 1)	N/A
Switchgear - LV	No asset-specific Duty Factor 1 (i.e. DF1 = 1)	N/A
Switchgear - HV Distribution	No asset-specific Duty Factor 1 (i.e. DF1 = 1)	N/A
Switchgear - HV Primary		
Switchgear - EHV & 132kV	Number of Operations	N/A
Steel Tower	No asset-specific Duty Factor 1 (i.e. DF1 = 1)	N/A
Conductor	No asset-specific Duty Factor 1 (i.e. DF1 = 1)	N/A
Fittings	No asset-specific Duty Factor 1 (i.e. DF1 = 1)	N/A
HV Transformer (GM)	% Utilisation	N/A
Transformers - EHV &	Transformer: % Utilisation	N/A
132kV	Tapchanger: Average Number of Daily Tapping Operations	N/A

Where there is only a single Duty Factor, then:-

Where two Factors are combined to create the Duty Factor, then:-

Duty Factor = $0.5 \times DF1 + 0.5 \times DF2$

EQ. 21

The Duty Factor lookup tables which are applied to the respective Asset Categories are shown in Table 31 to Table 34.

6.7 Health Score Modifier

6.7.1 Overview

Asset-specific Health Score Modifiers are calculated for each individual asset. The Health Score Modifier is determined from observed condition and measurement results. The Health Score Modifier is used to inform the Current Health Score, such that it reflects the observed health of the asset.

For all Health Index Asset Categories, except for EHV Towers, 132kV Towers, HV Transformers, EHV Transformers and 132kV Transformers, a single Health Score Modifier is calculated for each asset. The calculation of Health Score for assets in the EHV Towers, 132kV Towers, HV Transformers, EHV Transformers and 132kV Transformers Asset Categories requires separate evaluation of the Health Score for several subcomponents. Consequently, for these Asset Categories, separate Health Score Modifiers are evaluated for each subcomponent. In such cases, the appropriate Health Score Modifier is applied to determine the Current Health Score for each subcomponent of the asset.

The Health Score Modifier consists of three elements:-

- i) a Health Score Factor, which is a multiplication factor, derived from Condition Modifiers, that is applied to the Initial Health Score;
- ii) a Health Score Cap, which is a maximum limit that is applied to the product of the Initial Health Score and the Health Score Factor; and
- iii) a Health Score Collar, which is a minimum limit that is applied to the product of the Initial Health Score and the Health Score Factor.

Where a cap or a collar is applied an explanation for the application is provided in the associated table values in the appropriate appendices.

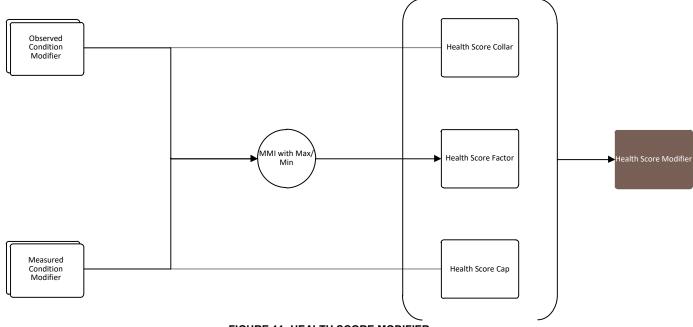


FIGURE 11: HEALTH SCORE MODIFIER

For assets, other than those in the HV, EHV and 132kV Transformer Health Index Asset Categories, the Health Score Modifier is determined by combining:-

- i) an Observed Condition Modifier, based on Observed Condition Inputs (such as condition assessment observations); and
- ii) a Measured Condition Modifier, based on Measured Condition Inputs.

The derivation of the Observed Condition Modifier and Measured Condition Modifier are described in Sections 6.9 and 6.10. Like the Health Score Modifier, each of these Condition Modifiers is comprised of three elements, i.e.: -

- i) a Condition Factor, which is a value associated with an observation or measurement, used to derive the Health Score Factor;
- ii) a Condition Cap, which is a maximum limit that is used to derive the Health Score Cap; and
- iii) a Condition Collar, which is a minimum limit that is used to derive the Health Score Collar.

The derivation of the Health Score Modifier for the HV, EHV and 132kV Transformer Asset Categories is described separately in Section 6.8.

In determining the Health Score Modifier, only the Condition Modifiers (and associated Condition Inputs) specified within the Methodology are applied. In recognition of different inspection and assessment approaches between DNOs:-

- i) There is no requirement for data to be collected to apply all the Condition Inputs specified within the Methodology. Where DNOs do not have data available to determine a specific Condition Input, the default values for that Condition Input (as specified in the calibration table for that Condition Input) are applied.
- ii) The calibration tables for each Condition Input (Appendices B.5 and B.6) are defined in terms of the outcomes or conclusions drawn from the relevant condition assessments or tests and are common to all DNOs. Where required, DNOs shall map data from their own systems against the relevant criteria shown on the calibration tables. This enables common Condition Inputs to be determined for all DNOs without

specifying the exact format of data that is collected in each individual DNOs inspection and assessment regimes.

iii) It will be permissible for DNOs to combine multiple measurements or observations from their own data set (or adjust for elapsed time since the condition data was collected) in their mapping to an individual Condition Input.

DNOs shall be required to record all mappings of their data to the Methodology's Condition Inputs within their own Network Asset Indices Methodology.

6.7.2 Combining Factors Using a Maximum and Multiple Increment (MMI) Technique

The Condition Factors, which form part of the Condition Modifiers, are combined together to derive the Health Score Factor using a technique that is referred to as "maximum and multiple increment". The calculation of the Health Score Factor is described in Section 6.7.3.

Each specific Condition Factor is derived from multiple Condition Input Factors, which come from associated lookup tables that map the observed or measured condition to a Condition Input Factor.

The combination of Condition Inputs to create the Observed Condition Modifier and the Measured Condition Modifier is described in Sections 6.9 and 6.10. This also uses an MMI approach.

By using the MMI approach throughout, this ensures that the Health Score Factor is primarily driven by the strongest observed or measured Condition Input Factor, supplemented to a lesser and controlled degree by any additional Condition Input Factors (depending on their strength).

This approach enables a single methodology to be applied to all asset groups, with the variation between asset groups captured through calibration factors.

Whilst multiple Factors may be considered in the derivation of a single combined Factor using the MMI technique, there will be instances where not all of the multiple Factors affect the resulting Factor. This is because:-

- i) where all of the multiple Factors are less than, or equal to 1, the resulting combined single Factor is determined from only the lowest and second lowest of the multiple Factors; and
- ii) where any of the multiple Factors are greater than 1, the resulting combined single Factor will be determined from consideration of the highest of the multiple Factors and a given number of the next highest Factors. The total number of Factors considered in each case will be no greater than the Max. No. of Combined Factors, which is a calibration parameter that is specified for each instance that the MMI technique is applied. The Max. No. of Combined Factors describes the total number of Factors that may be considered in the derivation of the combined single Factor, which is a count of Factors that includes the maximum Factor and any additional Factors that may be used to supplement it.

The combination of multiple Factors into a single Factor using the MMI technique is described below:-

If any of the Factors is greater than 1:

- Var_1 = Maximum of Factors
 - Var_2 = Excluding Var_1,
 - \circ For remaining Factors where (Factor 1) > 0
 - Sum (Factor 1) for the highest n-1 of these; where n = Max. No. of Combined Factors
- Var_3 = Var_2 / Factor Divider 1
- Combined Factor = Var_1 + Var_3
- \circ Else
 - Var_1 = Minimum of Factors
 - Var_2 = Second Lowest of Factors
 - Var_3 = (Var_2 1) / Factor Divider 2
 - Combined Factor = Var_1 + Var_3

Where:

- Max. No. of Combined Factors specifies how many Factors are able to simultaneously affect the Combined Factor.
- Factor Divider 1 and Factor Divider 2 are constants that specify the degree to which additional "good" or "bad" Factors are able further drive the Combined Factor.

A case statement description of this algorithm is demonstrated below.

Case 1: one or more Factors > 1

- Factors = 1.2, 1.0, 1.1, 1.02, 0.9, Max. No of Combined Factors = 4, Factor Divider 1 and Factor Divider 2 = 2
- Var 1 = maximum of Factors = Max(1.2, 1.0, 1.1, 1.02, 0.9) = 1.2
- Var 2 = sum remaining Factors where Factor 1 > 0 = (1.1-1) + (1.02 1) = 0.12
- Var 3 = Var 2 / Factor Divider 1 = 0.12 / 2 = 0.06
- Combined Factor = Var 1 + Var 3 = 1.2 + 0.06 = 1.26

Case 2: all Factors ≤ 1

- Factors = 1, 1, 0.8, 1, 0.9, Max. No of Combined Factors = 4, Factor Divider 1 and Factor Divider 2 = 2
- Var 1 = minimum of Factors = Min(1, 1, 0.8, 0.9) = 0.8
- Var 2 = Second minimum of Factors = 2ndMin(1, 1, 0.8, 0.9) = 0.9
- Var 3 = (Var 2 1) / Factor Divider 2 = (0.9 1) / 2 = -0.05
- Combined Factor = Var 3 + Var 1 = 0.8 + -0.05 = 0.75

6.7.3 Health Score Factor Calculation

The Health Score Factor is a multiplier that is applied to the Initial Health Score.

The Observed and Measured Condition Factors are combined to derive the Health Score Factor using the MMI technique described in Section 6.7.2.

For assets, other than those in the HV, EHV Transformer and 132kV Transformer Health Index Asset Categories, Factor Divider 1 and Factor Divider 2 have a value of 1.5 and the Max. No. of Combined Factors is 2. This means that the description of the combination method can be simplified to:-

- i) The Health Score Factor for an individual asset is determined by evaluating:-
 - the maximum of the Observed Condition Factor and the Measured Condition Factor for the asset; and
 - the minimum of the Observed Condition Factor and the Measured Condition Factor for the asset.
- ii) The calculation used to determine the Health Score Factor is dependent on the magnitudes of the maximum and minimum Condition Factors. The Health Score Factor is calculated as shown in Table 9.

a = Maximum of (Observed Condition Factor, Measured Condition Factor)	b = Minimum of (Observed Condition Factor, Measured Condition Factor)	Health Score Factor
>1	>1	= a + ((b-1)/1.5)
>1	≤1	= a
≤1	≤1	= b + ((a-1)/1.5)

The derivation of the Health Score Factor for the HV, EHV Transformer and 132kV Transformer Asset Categories is described separately in Section 6.8.

6.7.4 Health Score Cap

For assets, other than those in the HV, EHV and 132kV Transformer Health Index Asset Categories, the Health Score Cap is the minimum of:-

- i) The Observed Condition Cap associated with the Observed Condition Modifier; or
- ii) The Measured Condition Cap associated with the Measured Condition Modifier.

The derivation of the Condition Caps associated with the Observed and Measured Condition Modifiers is described in Sections 6.9.3 and 6.10.3 respectively.

The derivation of the Health Score Cap for the HV, EHV and 132kV Transformer Asset Categories is described in Section 6.8.

6.7.5 Health Score Collar

For assets, other than those in the HV, EHV and 132kV Transformer Health Index Asset Categories, the Health Score Collar is the maximum of:-

- i) The Observed Condition Collar associated with the Observed Condition Modifier; or
- ii) The Measured Condition Collar associated with the Measured Condition Modifier.

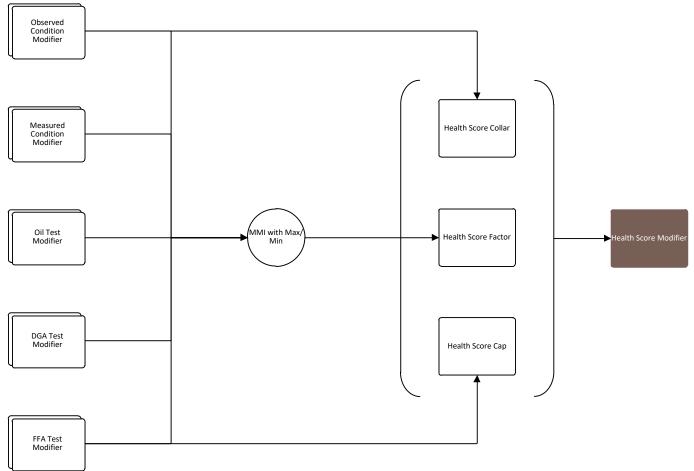
The derivation of the Condition Collars associated with the Observed and Measured Condition Modifiers is described in Sections 6.9.4 and 6.10.4 respectively.

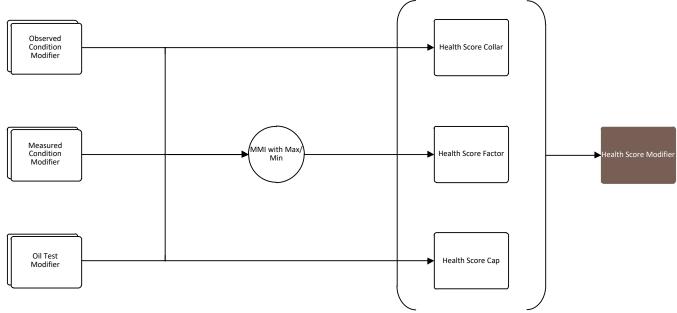
The derivation of the Health Score Collar for the HV, EHV and 132kV Transformer Asset Categories is described in Section 6.8.

In all cases, the Health Score Collar shall be limited to a value of no greater than 10.

6.8 Health Score Modifier for HV, EHV and 132kV Transformers

6.8.1 Main Transformer




FIGURE 12: HEALTH SCORE MODIFIER - MAIN TRANSFORMER

The Health Score Modifier for HV, EHV and 132kV Transformers is derived in exactly the same way as for a generic Health Score Modifier, apart from the following differences:

- i) There are three additional Condition Modifiers to the model: the Oil Test Modifier, the DGA Test Modifier and the FFA Test Modifier.
- ii) The parameters used to combine the Factors associated with these Condition Modifiers in order to derive the Health Score Factor are as shown in Table 10.

TABLE 10: HEALTH SCORE FACTOR FOR TRANSFORMERS				
Parameters for Combination Using MMI Technique				
Factor Divider 1 Factor Divider 2 Max. No. of Condition Factors				
1.5	1.5	4		

These additional inputs enable the Health Score of the Main Transformer component to be determined with greater accuracy.

6.8.2 Tapchanger for EHV and 132kV Transformers only

FIGURE 13: HEALTH SCORE MODIFIER - TAPCHANGER

The Health Score Modifier for a Transformer Tapchanger (where the Health Score needs to be separately determined) is derived in the same way as for a generic Health Score Modifier, apart from the following differences:

- There is an additional Condition Modifier to the model: the Oil Test Modifier. i)
- ii) The parameters used to combine the Factors associated with these Condition Modifiers in order to derive the Health Score Factor are as shown in Table 11.

TABLE 11: HEALTH SCORE FACTOR FOR TAPCHANGERS				
Parameters for Combination Using MMI Technique				
Factor Divider 1 Factor Divider 2 Max. No. of Condition Factors				
1.5	1.5	2		

This additional input enables the Health Score of the Tapchanger to be determined with greater accuracy.

6.9 Observed Condition Modifier

6.9.1 Overview

The Observed Condition Modifier is used in the determination of the Health Score Modifier.

An asset-specific Observed Condition Modifier is determined for each individual asset. For all Health Index Asset Categories, except for EHV Towers, 132kV Towers, HV Transformers, EHV Transformers and 132kV Transformers, a single Observed Condition Modifier is calculated for each asset.

The calculation of Health Score for assets in the EHV Towers, 132kV Towers, HV Transformers, EHV Transformers and 132kV Transformers Health Index Asset Categories requires separate evaluation of the Health Score for subcomponents of these assets. Consequently, for these Asset Categories, separate Observed Condition Modifiers are evaluated for each subcomponent associated with each asset.

This Condition Modifier is based on observed condition.

The Observed Condition Modifier consists of three components:-

- i) an Observed Condition Factor, which used in the derivation of the Health Score Factor;
- ii) an Observed Condition Cap, which is a maximum limit of Health Score that is used in the derivation of the Health Score Cap; and
- iii) an Observed Condition Collar, which is a minimum limit of Health Score that is used in the derivation of the Health Score Collar.

Multiple Observed Condition Inputs are used to derive the Observed Condition Modifier. Each Observed Condition Input consists of three elements:-

- i) a Condition Input Factor;
- ii) a Condition Input Cap; and
- iii) a Condition Input Collar.

The Condition Input Factors are used to derive the Observed Condition Factor using the MMI technique described in Section 6.7.2. Each Condition Input Cap is used in the derivation of the Observed Condition Cap and each Condition Input Collar is used in the derivation of the Observed Condition Collar.

The calibration tables relating to each of the Observed Condition Inputs are shown in Appendix B.5. The values assigned to each Condition Input, for an asset, are determined by looking up the relevant Condition Input values that correspond to the DNO's data for that asset.

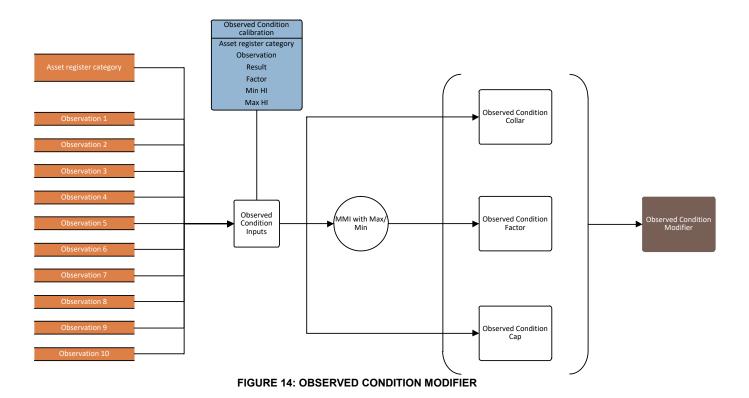


Table 12 shows the Observed Condition Inputs that are included in the determination of the Observed Condition Modifier for each Asset Category.

TABLE 12: OBSERVED CONDITION INPUTS				
Asset Category	Subcomponent	Observed Condition Input		
LV UGB	N/A	 Steel Cover and Pit condition Water/Moisture Bell Condition Insulation Condition Signs of heating Phase Barriers 		
LV Circuit Breaker	N/A	1. Switchgear external condition		
LV Board (WM)	N/A	 Switchgear external condition Compound Leaks Switchgear internal condition and operation Insulation Signs of Heating Phase Barriers 		
LV Pillars	N/A	 Switchgear external condition Compound Leaks Switchgear internal condition and operation Insulation Signs of Heating Phase Barriers 		

TABLE	12: OBSERVED	CONDITION INPUTS

DNO Common Network Asset Indices Methodology

Asset Category	Subcomponent	Observed Condition Input
HV Switchgear (GM) - Primary	N/A	 Switchgear external condition Cable boxes condition Oil leaks/ Gas pressure Thermographic Assessment Switchgear internal condition and operation Indoor Environment
HV Switchgear (GM) - Distribution	N/A	 Switchgear external condition Cable boxes condition Oil leaks/ Gas pressure Thermographic Assessment Switchgear internal condition and operation Indoor Environment
EHV Switchgear (GM)	N/A	 Switchgear external condition Cable boxes condition Oil leaks/ Gas pressure Thermographic Assessment Switchgear internal condition and operation Indoor Environment Support Structures
132kV Switchgear (GM)	N/A	 Switchgear external condition Cable boxes condition Oil leaks/ Gas pressure Thermographic Assessment Switchgear internal condition and operation Indoor Environment Support Structures Air systems
HV Transformer (GM)	N/A	 Transformer external condition Cable boxes condition
	Main Transformer	 Main tank condition Coolers/Radiator condition Bushings condition Kiosk condition Cable boxes condition
EHV Transformer (GM)	Tapchanger	 Tapchanger external condition Internal Condition Drive Mechanism Condition Condition of Selector & Diverter Contacts Condition of Selector & Diverter Braids
	Main Transformer	 Main tank condition Coolers/Radiator condition Bushings condition Kiosk condition Cable boxes condition
132kV Transformer (GM)	Tapchanger	 Tapchanger external condition Internal Condition Drive Mechanism Condition Condition of Selector & Diverter Contacts Condition of Selector & Diverter Braids
EHV Cable (Non Pressurised)	N/A	None
EHV Cable (Oil)	N/A	1. Presence of Crystalline Lead
EHV Cable (Gas)	N/A	1. Presence of Crystalline Lead
132kV Cable (Non Pressurised)	N/A	None
132kV Cable (Oil)	N/A	1. Presence of Crystalline Lead

Asset Category	Subcomponent	Observed Condition Input
132kV Cable (Gas)	N/A	1. Presence of Crystalline Lead
Submarine Cable	N/A	1. External Condition of Armour
LV Poles	N/A	 Visual Pole Condition Pole Top Rot Pole Leaning Bird / Animal Damage
HV Poles	N/A	 Visual Pole Condition Pole Top Rot Pole Leaning Bird / Animal Damage
EHV Poles	N/A	 Visual Pole Condition Pole Top Rot Pole Leaning Bird / Animal Damage
EHV Towers	Tower Steelwork	1. Tower Legs 2. Bracings 3. Crossarms 4. Peak
	Tower Paintwork	1. Paintwork Condition
	Foundations	1. Foundation Condition
132kV Towers	Tower Steelwork	1. Tower Legs 2. Bracings 3. Crossarms 4. Peak
	Tower Paintwork	1. Paintwork Condition
	Foundations	1. Foundation Condition
EHV Fittings	N/A	 Tower fittings Conductor fittings Insulators - Electrical Insulators - Mechanical
132kV Fittings	N/A	 Tower fittings Conductor fittings Insulators - Electrical Insulators - Mechanical
EHV Tower Line Conductor	N/A	1. Visual Condition 2. Midspan joints
132kV Tower Line Conductor	N/A	1. Visual Condition 2. Midspan joints

6.9.2 Observed Condition Factor

The Observed Condition Factor is used in the derivation of the Health Score Factor.

For each asset, multiple Observed Condition Input Factors are combined to create the Observed Condition Factor. These Observed Condition Input Factors are combined using the MMI technique that is described in Section 6.7.2.

Table 13 shows the parameters that are used when combining the Observed Condition Input Factors using the MMI technique.

	Subcomponent	ER - MMI CALCULATION PARAMETERS Parameters for Combination Using MMI Technique		
Asset Category		Factor Divider 1	Factor Divider 2	Max. No. of Combined Factors
LV UGB	N/A	1.5	1.5	3
LV Circuit Breaker	N/A	1.5	1.5	1
LV Board (WM)	N/A	1.5	1.5	3
LV Pillars	N/A	1.5	1.5	3
HV Switchgear (GM) - Primary	N/A	1.5	1.5	3
HV Switchgear (GM) - Distribution	N/A	1.5	1.5	3
EHV Switchgear (GM)	N/A	1.5	1.5	3
132kV Switchgear (GM)	N/A	1.5	1.5	3
HV Transformer (GM)	N/A	1.5	1.5	2
	Main Transformer	1.5	1.5	3
EHV Transformer (GM)	Tapchanger	1.5	1.5	3
	Main Transformer	1.5	1.5	3
132kV Transformer (GM)	Tapchanger	1.5	1.5	3
EHV Cable (Non Pressurised)	N/A	N/A	N/A	N/A
EHV Cable (Oil)	N/A	1.5	1.5	1
EHV Cable (Gas)	N/A	1.5	1.5	1
132kV Cable (Non Pressurised)	N/A	N/A	N/A	N/A
132kV Cable (Oil)	N/A	1.5	1.5	1
132kV Cable (Gas)	N/A	1.5	1.5	1
Submarine Cable	N/A	1.5	1.5	1
LV Poles	N/A	1.5	1.5	2
HV Poles	N/A	1.5	1.5	2
EHV Poles	N/A	1.5	1.5	2
	Tower Steelwork	1.5	1.5	3
EHV Towers	Tower Paintwork	1.5	1.5	1
	Foundations	1.5	1.5	1
	Tower Steelwork	1.5	1.5	3
132kV Towers	Tower Paintwork	1.5	1.5	1
	Foundations	1.5	1.5	1
EHV Fittings	N/A	1.5	1.5	3
132kV Fittings	N/A	1.5	1.5	3
EHV Tower Line Conductor	N/A	1.5	1.5	1
132kV Tower Line Conductor	N/A	1.5	1.5	1

6.9.3 Observed Condition Cap

The Observed Condition Cap for an asset is the minimum value of Condition Input Cap associated with each of the Observed Condition Inputs relating to that asset (as shown in the calibration tables for Observed Condition Inputs in Appendix B).

6.9.4 Observed Condition Collar

The Observed Condition Collar for an asset is the maximum value of Condition Input Collar associated with each of the Observed Condition Inputs relating to that asset (as shown in the calibration tables for Observed Condition Inputs in Appendix B).

6.9.5 Observed Condition Modifier for Cable Assets

There are no Observed Condition Inputs for cable assets other than Submarine Cables. For all cable assets with the exception of Submarine Cables:-

- i) the Observed Condition Factor is set to 1;
- ii) the Observed Condition Cap is 10; and
- iii) the Observed Condition Collar is 0.5.

6.10 Measured Condition Modifier

6.10.1 Overview

The Measured Condition Modifier is used in the determination of the Health Score Modifier.

An asset-specific Measured Condition Modifier is determined for each individual asset.

For all Health Index Asset Categories, with the exception of EHV Towers, 132kV Towers, EHV Transformers and 132kV Transformers, a single Measured Condition Modifier is calculated for each asset.

The calculation of Health Score for assets in the EHV Towers, 132kV Towers, EHV Transformers and 132kV Transformers Health Index Asset Categories requires separate evaluation of the Health Score for subcomponents of these assets. Consequently, for these Asset Categories, separate Measured Condition Modifiers are evaluated for each subcomponent associated with each asset.

This Condition Modifier is based on measured condition.

The Measured Condition Modifier consists of three components:-

- i) a Measured Condition Factor, which is used in the derivation of the Health Score Factor;
- ii) a Measured Condition Cap, which is a maximum limit of Health Score that is used in the derivation of the Health Score Cap; and
- iii) a Measured Condition Collar, which is a minimum limit of Health Score that is used in the derivation of the Health Score Collar.

Multiple Measured Condition Inputs are used to derive the Measured Condition Modifier. Each Measured Condition Input consists of three elements:-

- i) a Condition Input Factor;
- ii) a Condition Input Cap; and
- iii) a Condition Input Collar.

The Condition Input Factors are used to derive the Measured Condition Factor using the MMI technique described in Section 6.7.2. Each Condition Input Cap is used in the derivation of the Measured Condition Cap and each Condition Input Collar is used in the derivation of the Measured Condition Collar.

The calibration tables relating to each of the Measured Condition Inputs are shown in Appendix B.6. The values assigned to each Condition Input for a particular asset are determined by looking up the relevant Condition Input values that correspond to the DNO's data for that asset.

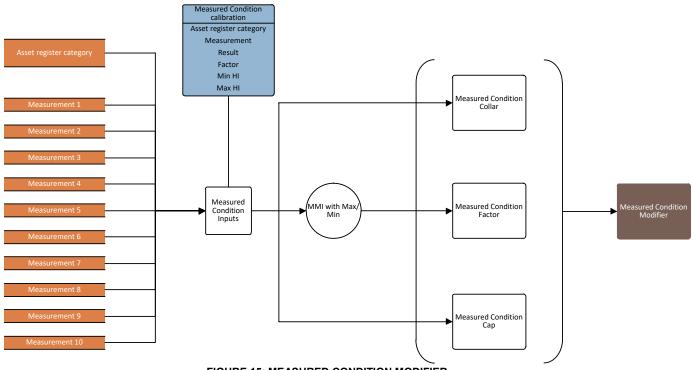


FIGURE 15: MEASURED CONDITION MODIFIER

Table 14 shows the Measured Condition Inputs that are included in the determination of the Measured Condition Modifier for each Asset Category.

Asset Category	Subcomponent	Measured Condition Input
LV UGB	N/A	1. Operational Adequacy
LV Circuit Breaker	N/A	1. Operational Adequacy
LV Board (WM)	N/A	1. Operational Adequacy
LV Pillars	N/A	1. Operational Adequacy
HV Switchgear (GM) - Primary	N/A	 Partial Discharge Ductor Test IR Test Oil Tests Temperature Readings Trip Test
HV Switchgear (GM) - Distribution	N/A	 Partial Discharge Ductor Test Oil Tests Temperature Readings Trip Test

TABLE 14: MEASURED CONDITION INPUTS

Asset Category	Subcomponent	Measured Condition Input
EHV Switchgear (GM)	N/A	 Partial Discharge Ductor Test IR Test Oil Tests/ Gas Tests Temperature Readings Trip Test
132kV Switchgear (GM)	N/A	 Partial Discharge Ductor Test IR Test Oil Tests/ Gas Tests Temperature Readings Trip Test
HV Transformer (GM)	N/A	1. Partial Discharge 2. Temperature Readings
EHV Transformer (GM)	Main Transformer	1. Partial Discharge 2. Temperature Readings
	Tapchanger	1. Tapchanger Partial Discharge
132kV Transformer	Main Transformer	 Partial Discharge Temperature Readings
	Tapchanger	1. Tapchanger Partial Discharge
EHV Cable (Non Pressurised)	N/A	1. Sheath Test 2. Partial Discharge 3. Fault history
EHV Cable (Oil)	N/A	1. Leakage
EHV Cable (Gas)	N/A	1. Leakage
132kV Cable (Non Pressurised)	N/A	1. Sheath Test 2. Partial Discharge 3. Fault history
132kV Cable (Oil)	N/A	1. Leakage
132kV Cable (Gas)	N/A	1. Leakage
Submarine Cable	N/A	1. Sheath Test 2. Partial Discharge 3. Fault history
LV Poles	N/A	1. Pole decay / deterioration
HV Poles	N/A	1. Pole decay / deterioration
EHV Poles	N/A	1. Pole decay / deterioration
	Tower Steelwork	None
EHV Towers	Tower Paintwork	None
	Foundations	None
	Tower Steelwork	None
132kV Towers	Tower Paintwork	None
	Foundations	None
EHV Fittings	N/A	1. Thermal Imaging 2. Ductor Tests
132kV Fittings	N/A	1. Thermal Imaging 2. Ductor Tests
EHV Tower Line Conductor	N/A	 Conductor Sampling Corrosion Monitoring Survey

Asset Category	Subcomponent	Measured Condition Input
132kV Tower Line Conductor	N/A	1. Conductor Sampling 2. Corrosion Monitoring Survey

6.10.2 Measured Condition Factor

The Measured Condition Factor is used in the derivation of the Health Score Factor.

For each asset, multiple Measured Condition Input Factors are combined to create the Measured Condition Factor. These Measured Condition Input Factors are combined using the MMI technique that is described in Section 6.7.2.

Table 15 shows the parameters that are used when combining the Measured Condition Factors using the MMI technique.

TABLE 15: MEASURED		Parameters for Combination Using MMI Technique			
	Subcomponent	Factor Divider 1	Factor Divider 2	Max. No. of Combined Factors	
LV UGB	N/A	1.5	1.5	1	
LV Circuit Breaker	N/A	1.5	1.5	1	
LV Board (WM)	N/A	1.5	1.5	1	
LV Pillars	N/A	1.5	1.5	1	
HV Switchgear (GM) - Primary	N/A	1.5	1.5	3	
HV Switchgear (GM) - Distribution	N/A	1.5	1.5	3	
EHV Switchgear (GM)	N/A	1.5	1.5	3	
132kV Switchgear (GM)	N/A	1.5	1.5	3	
HV Transformer (GM)	N/A	1.5	1.5	2	
EHV Transformer (GM)	Main Transformer	1.5	1.5	2	
	Tapchanger	1.5	1.5	1	
	Main Transformer	1.5	1.5	2	
132kV Transformer (GM)	Tapchanger	1.5	1.5	1	
EHV Cable (Non Pressurised)	N/A	1.5	1.5	2	
EHV Cable (Oil)	N/A	1.5	1.5	1	
EHV Cable (Gas)	N/A	1.5	1.5	1	
132kV Cable (Non Pressurised)	N/A	1.5	1.5	2	
132kV Cable (Oil)	N/A	1.5	1.5	1	
132kV Cable (Gas)	N/A	1.5	1.5	1	
Submarine Cable	N/A	1.5	1.5	2	
LV Poles	N/A	1.5	1.5	1	
HV Poles	N/A	1.5	1.5	1	
EHV Poles	N/A	1.5	1.5	1	
EHV Towers	Tower Steelwork	N/A	N/A	N/A	
	Tower Paintwork	N/A	N/A	N/A	
	Foundations	N/A	N/A	N/A	
132kV Towers	Tower Steelwork	N/A	N/A	N/A	
	Tower Paintwork	N/A	N/A	N/A	
	Foundations	N/A	N/A	N/A	
EHV Fittings	N/A	1.5	1.5	1	
132kV Fittings	N/A	1.5	1.5	1	
EHV Tower Line Conductor	N/A	1.5	1.5	1	
132kV Tower Line Conductor	N/A	1.5	1.5	1	

TABLE 15: ME	ASURED CONDITION MODIFIER	- MMI CALCULATION PARAMETERS

6.10.3 Measured Condition Cap

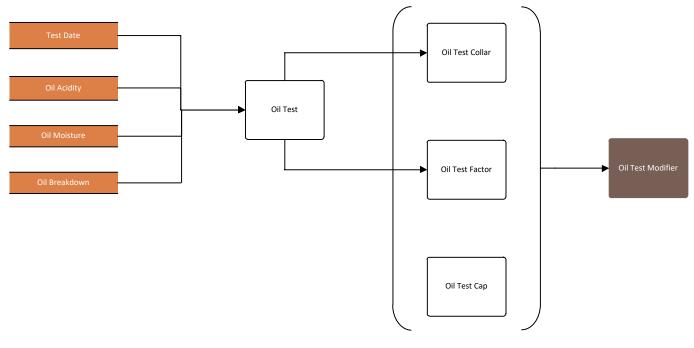
The Measured Condition Cap for an asset is the minimum value of Condition Input Cap associated with each of the Measured Condition Inputs relating to that asset (as shown in the calibration tables for Measured Condition Inputs in Appendix B).

6.10.4 Measured Condition Collar

The Measured Condition Collar for an asset is the maximum value of Condition Input Collar associated with each of the Measured Condition Inputs relating to that asset (as shown in the calibration tables for Measured Condition Inputs in Appendix B).

6.10.5 Measured Condition Modifier for Steel Towers (Structure Only)

There are no Measured Condition Inputs for Steel Towers (Steelwork, Paint or Foundation components). For these assets:-


- i) the Measured Condition Factor is set to 1;
- ii) the Measured Condition Cap is 10; and
- iii) the Measured Condition Collar is 0.5.

6.11 Oil Test Modifier

The Oil Test Modifier is derived from the oil condition information (moisture content, acidity and breakdown strength) [Ref. 3 & 4]. It provides additional information to determine the Health Score when oil condition test data is available. This test data can be used to identify defects or degradation within the asset and is therefore used to increase the Health Score when necessary.

The Oil Test Modifier consists of three components:-

- i) An Oil Test Factor, which used in the derivation of the Health Score Factor;
- ii) an Oil Test Cap, which is a maximum limit of Health Score that used in the derivation of the Health Score Cap; and
- iii) an Oil Test Collar, which is a minimum limit of Health Score that is used in the derivation of the Health Score Collar.

The process for converting the results into a score and subsequently into an Oil Test Factor, an Oil Test Cap and an Oil Test Collar is as follows:

- The moisture, acidity and breakdown strength results are standardised by converting them into scores using the Condition State calibration tables; respectively Table 203, Table 204 and Table 205 in Appendix B.
- ii) The scores for the three condition points (moisture, breakdown strength and acidity) are then multiplied by the values relative to the importance of the measured condition point and summed to create an Oil Condition Score as shown in EQ. 22.

EQ. 22

- iii) The Oil Condition Factor and Oil Test Collar value are then derived using the lookup values shown in Table 206 and Table 207 in Appendix B.
- iv) The Oil Test Cap is always set to 10: because oil can be renewed, oil tests are unable to determine the absence of degradation in an asset - only its presence. Therefore, the Oil Test Cap cannot be set to less than 10, regardless of the Oil Test result.

6.12 DGA Test Modifier

The DGA Test Modifier is derived from the dissolved gas content in the oil [Ref. 5]. It provides additional information to determine the Health Score when DGA test data is available. This test data can be used to detect abnormal electrical or thermal activity within the asset and is therefore used to increase the Health Score when necessary.

The DGA Test Modifier consists of three components:-

- i) a DGA Test Factor, which is used in the derivation of the Health Score Factor;
- ii) a DGA Test Cap, which is a maximum limit of Health Score that is used in the derivation of the Health Score Cap; and
- iii) a DGA Test Collar, which is a minimum limit of Health Score that is used in the derivation of the Health Score Collar.

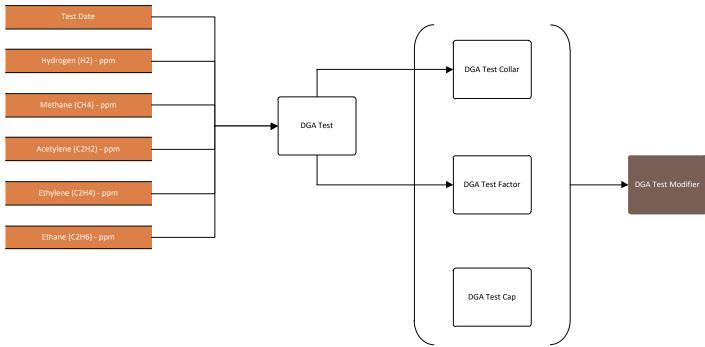


FIGURE 17: DGA TEST MODIFIER

The diagnostic process described here was developed by EA Technology in conjunction with a number of GB Distribution Network Operators within Module 4 of the Strategic Technology Programme [Ref. 4]. Of nine gases measured during DGA (namely oxygen, nitrogen, carbon monoxide, carbon dioxide, hydrogen, methane, ethylene, ethane and acetylene) only the latter five were recognised as providing an indication of transformer condition.

Therefore, only the levels of the following gases are used to derive the DGA Test Modifier:-

- i) Hydrogen;
- ii) Methane;
- iii) Ethylene;
- iv) Ethane; and
- v) Acetylene.

The gas levels used to produce this modifier are calibrated to give a DGA Test Collar of 7 or greater if there is indication of a potential end of life fault. The result of this analysis is used to determine the DGA Test Collar and the DGA Test Factor. The DGA Test Cap is always set to 10.

The results for each of the five gases are standardised by converting them into scores using condition state calibration tables; these are shown in Table 208 - Table 212 in Appendix B.

The condition state scores for the five gases (hydrogen, methane, ethane, ethylene and acetylene) are then multiplied by values relative to the importance of the quantity of each gas measured and summed to create a DGA Score as shown in EQ. 23.

DGA Score = 50 × Hydrogen Score + 30 × Methane Score + 30 × Ethylene Score + 30 × Ethane Score + 120 × Acetylene Score

EQ. 23

In order to create a DGA Test Collar in the range of 1 to 10, the DGA Score is divided by a DGA divider value; this is set at 220 as shown in EQ. 24.

 $DGA Test Collar = DGA Score \div 220$

EQ. 24

This value is chosen to give a Health Score of 7 at the point where DGA levels are indicative of severe degradation.

For EHV and 132kV Transformers, the DGA Test Factor is then created by considering the trend with historical results (over a defined period) for the same asset. The percentage change is derived as shown in EQ. 25.

This is used to categorise the trend into one of five categories or bands (negative, neutral, small, significant or large), as depicted in calibration Table 213 in Appendix B.

The category or band is then used to assign the DGA Test Factor, using the calibration Table 214 in Appendix B.

For HV Transformers, the DGA Test Factor is always set to 1 as DGA tests are not routinely undertaken, which prevents comparison with previous results.

The DGA Test Cap is always set to 10: because oil can be renewed, DGA tests are unable to determine the absence of degradation in an asset - only its presence. Therefore, the DGA Test Cap cannot be set to less than 10, regardless of the DGA test result.

6.13 FFA Test Modifier

The FFA Test Modifier is derived from the level of furfuraldehyde (FFA) in oil. It provides additional information to determine the Health Score when FFA test data is available. This test data can be used to detect degradation of cellulose paper, and hence residual mechanical strength of insulation within the asset. It is used to increase the Health Score when necessary.

The FFA Test Modifier consists of three components:-

- i) an FFA Test Factor, which is used in the derivation of the Health Score Factor;
- ii) an FFA Test Cap, which is a maximum limit of Health Score that is used in the derivation of the Health Score Cap; and
- iii) an FFA Test Collar, which is a minimum limit of Health Score that is used in the derivation of the Health Score Collar.

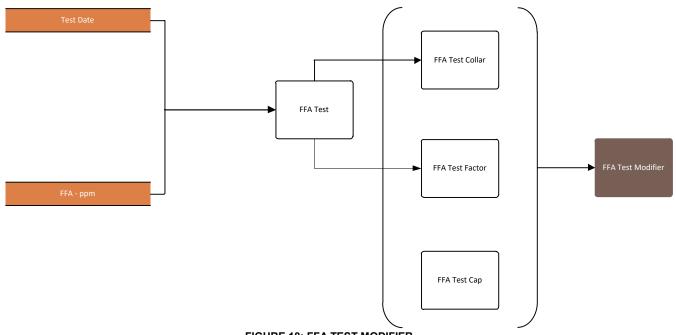
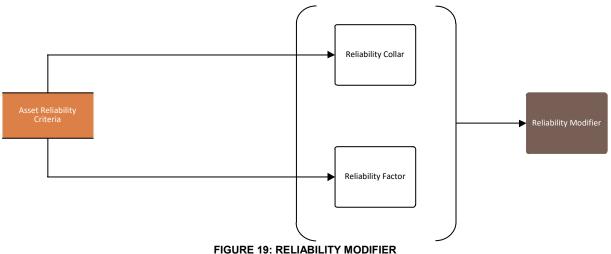


FIGURE 18: FFA TEST MODIFIER

The FFA Test Collar is derived from the furfuraldehyde (FFA) value.

Furfuraldehyde is one of a family of compounds (furans) produced when cellulose (paper) degrades. As the paper ages, the cellulose chains progressively break, reducing the mechanical strength. The average length of the cellulose chains is defined by the degree of polymerisation (DP) which is a measure of the number of Carbon-Carbon bonds or the length of chains making up the paper fibres. In a new transformer, the DP value is approximately 1000. When this is reduced to approximately 250, the paper has very little remaining strength and is at risk of failure during operation.

There is an approximate relationship between the value of furfuraldehyde in the oil and the DP of the paper, which has been established experimentally. A value of 5ppm of FFA is indicative of paper with a DP of approximately 250. For this reason, the FFA Test Collar is calibrated to give a value of 7 for a FFA value of 5; this empirical relationship has been mathematically described as shown in EQ. 26.


Where:

• S is the FFA value in ppm.

The FFA Test Factor is determined from the FFA value using the calibration Table 215 in Appendix B. The default value for the FFA Test Factor is 1.

The FFA Test Cap is always set to 10.

6.14 Reliability Modifier

An additional Reliability Modifier may be applied (at individual DNO discretion) to the Current Health Score of those assets that the individual DNO believes have a materially different PoF than would be expected for a typical asset within the same Asset Category with the same Health Score, because of generic issues that affect health/reliability associated with:-

- i) the make and type of the asset; and
- ii) the construction of the asset (e.g. material used, or treatment applied).

Typically, these issues would have been identified from manufacturer notifications, failure investigations, forensic analysis or because of inspections from assets of the same make or type. This recognises that there are wider sources of knowledge about the condition and performance of individual assets.

Where a DNO applies a Reliability Modifier to an asset, this shall be documented within their own Network Asset Indices Methodology.

The Reliability Modifier may comprise of two separate components:-

- i) a multiplication factor applied in the calculation of the Current Health Score (the Reliability Factor); and
- ii) a Health Score Collar applied as a minimum limit to the Current Health Score (the Reliability Collar).

The Reliability Factor shall be applied as a multiplier to the Current Health Score that is derived from the initial age-based Health Score and the Health Score Modifier.

The Reliability Collar shall be applied as a minimum limit to the Health Score that is derived from the initial age-based Health Score, the Health Score Modifier and the Reliability Factor (where applied).

The Reliability Factor shall have a value between 0.6 and 1.5 with a default value of 1. The default value for the Reliability Collar shall be 0.5. Each DNO has discretion over whether the Reliability Modifier applied to individual asset types comprises:-

- i) only a Reliability Factor;
- ii) only a Reliability Collar; or
- iii) both.

When applying Reliability Modifiers, individual DNOs may use any appropriate data they have relating to the asset or assets. This will include their own defect databases as well as information gathered as part of the national notification process for:-

- i) National Equipment Defect Reports (NEDeRs);
- ii) Dangerous Incident Notifications (DINs); or
- iii) Suspension of Operational Practice notices (SOPs).

7. CONSEQUENCES OF FAILURE

7.1 Overview

The second key dimension of the Methodology is a consideration of the consequences of asset failure. This is used in combination with an assessment of the probability of asset failure to derive a single value for network risk.

The Methodology breaks the effects of failure down into four Consequence Categories:-

- i) Financial;
- ii) Safety;
- iii) Environmental; and
- iv) Network Performance.

Each of these is quantified in terms which allow for the monetisation within each Consequence Category. The four values are then simply added to produce an overall CoF value. All quoted values are in \pounds (at 2012/13 prices).

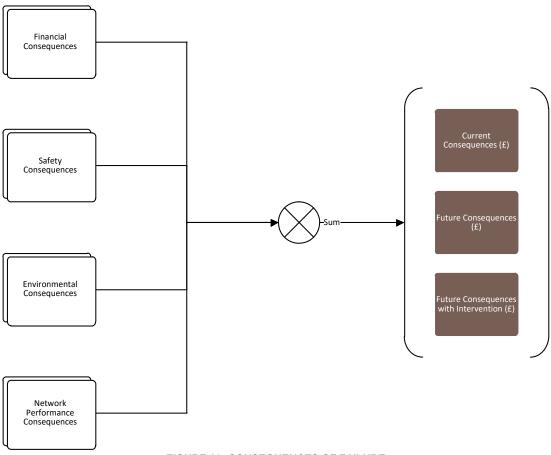


FIGURE 20: CONSEQUENCES OF FAILURE

These are the only Consequence Categories considered within the Methodology.

CoF is generally assumed to remain static over time, unless affected by investment or third-party actions, hence current consequence and forecast future consequence values will generally be the same.

The calculation of CoF is based on the same failure modes as PoF, i.e. Incipient Failure, Degraded Failure and Catastrophic Failure.

The Methodology is based on the production of a Reference Cost of Failure for each asset type which represents the 'typical' effects of a failure based on DNO experience. Asset-specific costs are based on the application of specific modifying factors to these reference costs to reflect the costs associated with a condition-based failure of the asset in question. The reference costs and factors used within the Methodology are common for all DNOs. This process is shown in Figure 21.

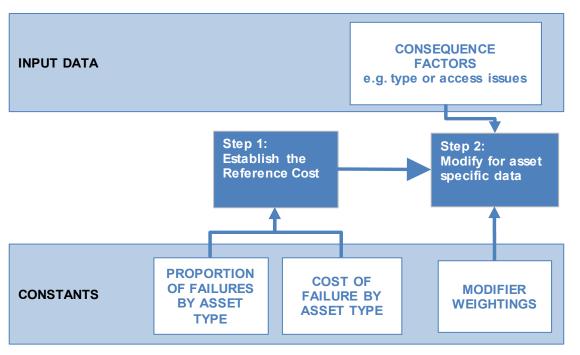


FIGURE 21: COF METHODOLOGY

The interdependence of assets in terms of Network Performance is considered at EHV and 132kV (typically N-1 assets) by including a factor for coincident failure in deriving the Reference Network Performance Cost of Failure. This is done by considering the Probability of a Coincident Outage (see Table 235). Other assets are assumed to be independent of one another, reflecting the radial nature of distribution networks. However, the impact of the failure of one asset on the propensity of another asset to fail is implicitly included in the observable failure rate and hence the PoF parameters (e.g. K-Value in Table 21).

7.2 Reference Costs of Failure

The following sections set out the process to produce the Reference Costs of Failure and modifying factors for each of the four Consequence Categories within the Methodology. These costs are shown in Table 16.

	TABLE 16: REFER	ENCE C0313 0	FRILORE		
Asset Register Category	Financial	Safety	Environmental	Network Performance	Total
LV Poles	£1,113	£536	£75	£457	£2,181
6.6/11kV Poles	£1,592	£179	£75	£1,621	£3,467
20kV Poles	£1,910	£179	£75	£1,621	£3,785
33kV Pole	£2,053	£179	£75	£76	£2,383
66kV Pole	£3,094	£179	£75	£152	£3,500
33kV Tower	£5,618	£334	£155	£483	£6,590
66kV Tower	£10,527	£334	£155	£1,385	£12,401
132kV Tower	£12,172	£334	£155	£3,462	£16,123
33kV Fittings	£189	£1,336	£80	£222	£1,827
66kV Fittings	£243	£1,336	£80	£444	£2,103
132kV Fittings	£404	£1,336	£80	£1,110	£2,930
33kV OHL (Tower Line) Conductor	£14,811	£1,336	£80	£1,110	£17,337
66kV OHL Conductor	£19,644	£1,336	£80	£2,221	£23,281
132kV OHL (Tower Line) Conductor	£16,988	£1,336	£80	£5,552	£23,956
HV Sub Cable	£151,492	£2	£3,000	£160,627	£315,121
33kV UG Cable (Non Pressurised)	£26,340	£2	£605	£2,939	£29,886
33kV UG Cable (Oil)	£108	£2	£4,898	£3	£5,011
33kV UG Cable (Gas)	£264	£2	£45	£29	£340
66kV UG Cable (Non Pressurised)	£53,291	£2	£605	£5,878	£59,776
66kV UG Cable (Oil)	£116	£2	£4,898	£6	£5,022
66kV UG Cable (Gas)	£432	£2	£45	£59	£538
132kV UG Cable (Non Pressurised)	£90,934	£2	£905	£14,696	£106,537
132kV UG Cable (Oil)	£129	£2	£6,167	£15	£6,313
132kV UG Cable (Gas)	£667	£2	£67	£147	£883
EHV Sub Cable	£237,500	£2	£3,000	£2,939	£243,441
132kV Sub Cable	£400,000	£2	£3,000	£14,696	£417,698
LV Circuit Breaker	£3,388	£8,050	£18	£9,247	£20,703
LV Pillar (ID)	£4,719	£8,050	£18	£6,836	£19,623
LV Pillar (OD at Substation)	£5,136	£8,050	£18	£6,836	£20,040
LV Pillars (OD not at Substation)	£2,854	£8,504	£18	£6,836	£18,212
LV UGB	£2,854	£8,504	£71	£2,213	£13,642
LV Board (WM)	£6,520	£8,050	£18	£6,836	£21,424
LV Board (X-type Network) (WM)	£7,694	£8,050	£18	£6,836	£22,598
	21,001	20,000	~!~	20,000	,000

TABLE 16: REFERENCE COSTS OF FAILURE

DNO Common Network Asset Indices Methodology

Asset Register Category	Financial	Safety	Environmental	Network Performance	Total
6.6/11kV CB (GM) Secondary	£5,792	£4,262	£1,093	£9,725	£20,872
6.6/11kV Switch (GM)	£4,384	£4,262	£1,093	£9,725	£19,464
6.6/11kV RMU	£8,190	£4,262	£1,093	£9,725	£23,270
6.6/11kV X-type RMU	£11,083	£4,262	£1,093	£9,725	£26,163
20kV CB (GM) Primary	£7,911	£20,771	£1,102	£34,037	£63,821
20kV CB (GM) Secondary	£6,005	£4,262	£1,093	£9,725	£21,085
20kV Switch (GM)	£5,081	£4,262	£1,093	£9,725	£20,161
20kV RMU	£8,343	£4,262	£1,093	£9,725	£23,423
33kV CB (Air Insulated Busbars)(ID) (GM)	£12,081	£20,771	£2,694	£24,248	£59,794
33kV CB (Air Insulated Busbars)(OD) (GM)	£14,874	£20,771	£2,694	£12,274	£50,613
33kV CB (Gas Insulated Busbars)(ID) (GM)	£18,299	£20,771	£2,694	£24,248	£66,012
33kV CB (Gas Insulated Busbars)(OD) (GM)	£18,299	£20,771	£2,694	£12,274	£54,038
33kV Switch (GM)	£8,537	£20,771	£2,694	£12,274	£44,276
33kV RMU	£21,099	£20,771	£2,694	£12,274	£56,838
66kV CB (Air Insulated Busbars)(ID) (GM)	£24,081	£20,771	£2,694	£24,248	£71,794
66kV CB (Air Insulated Busbars)(OD) (GM)	£38,500	£20,771	£2,694	£12,274	£74,239
66kV CB (Gas Insulated Busbars)(ID) (GM)	£43,431	£20,771	£2,694	£24,248	£91,144
66kV CB (Gas Insulated Busbars)(OD) (GM)	£43,431	£20,771	£2,694	£12,274	£79,170
132kV CB (Air Insulated Busbars)(ID) (GM)	£67,501	£31,968	£8,794	£128,126	£236,389
132kV CB (Air Insulated Busbars)(OD) (GM)	£31,781	£31,968	£8,794	£32,331	£104,874
132kV CB (Gas Insulated Busbars)(ID) (GM)	£140,585	£31,968	£8,794	£128,126	£309,473
132kV CB (Gas Insulated Busbars)(OD) (GM)	£140,585	£31,968	£8,794	£32,331	£213,678
6.6/11kV Transformer (GM)	£7,739	£4,262	£3,171	£3,619	£18,791
20kV Transformer (GM)	£8,811	£4,262	£3,171	£3,619	£19,863
33kV Transformer (GM)	£73,000	£20,771	£14,190	£24,098	£132,059
66kV Transformer	£112,203	£20,771	£14,190	£24,098	£171,262
132kV Transformer	£218,932	£31,968	£29,212	£191,889	£472,001

7.3 Financial Consequences

7.3.1 Overview

The Financial CoF is the cost of repair or replacement to return an asset to its pre-fault state. In the context of the Methodology, it is derived using an Asset Category Reference Financial Cost of Failure, which is then modified based on asset-specific data.

The overall process for deriving the Financial CoF is shown in Figure 22.

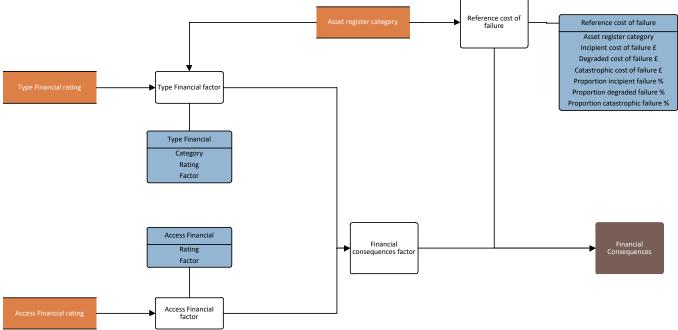


FIGURE 22: FINANCIAL COF

7.3.2 Reference Financial Cost of Failure

The Reference Financial Cost of Failure is based on an assessment of the typical replacement and repair costs incurred by a failure of the asset in each of its three failure modes; incipient, degraded and catastrophic. This assessment considers the cost of a repair in each case, and the relative proportions of failures that are associated with each failure mode, to derive a weighted average financial cost.

Reference Financial Cost of Failure = (Proportion of Failures that are Incipient Failure × Likely Cost of Incipient Failure) + (Proportion of Failures that are Degraded Failures × Likely Cost of Degraded Failure) + (Proportion of Failures that are Catastrophic Failures × Likely Cost of Catastrophic Failure)

EQ. 27

The financial consequences framework has been built with reference to historic reported costs for repairs and replacement such that the values used represent the actual typical costs incurred by a DNO in returning a faulted asset to pre-fault serviceability.

Further detail, including the relative proportions of failures by failure type (incipient, degraded and catastrophic), used in the derivation of the Reference Financial Cost of Failure can be found in Table 218 in Appendix D. The Reference Financial Cost of Failure shown in this table, for the relevant Asset Category, shall be used to calculate the Financial CoF, for each asset.

7.3.3 Financial Consequences Factor

The Financial CoF can then be derived for individual assets by applying a Type Financial Factor and/or an Access Financial Factor to the Reference Financial Cost of Failure. This results in a Financial CoF that reflects the consequence characteristics of an individual asset of that type which may materially affect the cost of returning the asset to its pre-fault state, in comparison to what would be considered typical for the Asset Category.

Financial Consequences of Failure = Reference Financial Cost of Failure × Financial Consequences Factor

EQ. 28

Where:

Financial Consequences Factor = Type Financial Factor × Access Financial Factor

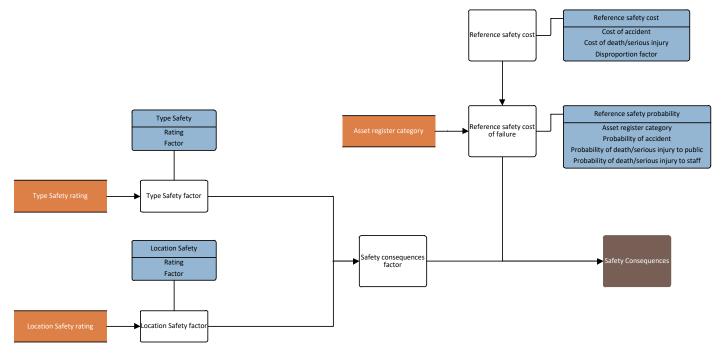
EQ. 29

7.3.3.1 TYPE FINANCIAL FACTOR

This Factor allows for an adjustment to be made based on considerations specific to an asset or group of assets at a sub-level of the Asset Register Category. This will typically be applied to reflect industry experience with operating specific subcategories of asset where repair and replacement costs vary from the reference cost. Lookup tables containing the criteria and values for the Type Financial Factor can be found in Table 219 in Appendix D.

7.3.3.2 ACCESS FINANCIAL FACTOR

This Factor allows for an adjustment to be made based on a consideration of access to the faulted asset, insofar as issues of access will have a direct and material influence on the scale of Financial Consequences, e.g. access to constrained sites/confined spaces. Lookup tables containing the criteria and values for the Access Financial Factor can be found in Table 220 and Table 221 in Appendix D.


7.4 Safety Consequences

7.4.1 Overview

The Safety Consequences have been derived with reference to appropriate safety regulations and guidance. The guidance for the components comprising safety consequences comes from the Electricity Safety, Quality and Continuity Regulations (ESQCR) 2002 [Ref. 6] and associated guidance from the Health and Safety Executive (HSE) [Ref. 7]. (See Section 8.4)

The overall process for deriving the Safety CoF is shown in Figure 23.

DNO Common Network Asset Indices Methodology

7.4.2 Reference Safety Cost of Failure

The Reference Safety Cost of Failure is derived initially by applying the probability that a failure could result in an accident, serious injury or fatality to the cost of a Lost Time Accident (LTA) or Death or Serious Injury (DSI) as appropriate.

```
Reference Safety Cost of Failure =
((Probability of LTA × Cost of LTA) +
((Probability of DSI to the Public + Probability of DSI to the Staff)) ×
(Cost of DSI)) × Disproportion Factor
```

EQ. 30

Where:

- Cost of LTA is the Reference Cost of a Lost Time Accident as shown in Table 223 in Appendix D
- Cost of DSI is the Reference Cost of a Death or Serious Injury as shown in Table 224 in Appendix D
- Disproportion Factor is explained later in this section

Each Asset Category has an associated reference safety probability based on applying the appropriate value (of preventing a LTA or DSI) to the corresponding probability that each of these events occurs, categorised as follows:-

- i) LTA;
- ii) DSI to member of staff; and
- iii) DSI to member of the public.

These values have been derived from an assessment of both disruptive and non-disruptive failure probabilities for these events based on bottom up assessments of faults. These have been evaluated for each Asset Category and are:-

i) probability that event could be hazardous;

- ii) probability that person who is present suffers the effect; and
- iii) probability that affected person is present when fault occurs.

The Reference Safety Cost of Failure uses costs for 'death or serious injury' and 'accident' that are based on the HSE's GB cross-industry wide appraisal values for fatal injuries and for non-fatal injuries [Ref. 7]. These represent a quantification of the societal value of preventing a fatality or lost time accident. The same valuation of costs for 'death or serious injury' and 'accident' has been used in the derivation of the Reference Safety Cost of Failure for all Asset Categories.

In addition, a Disproportion Factor recognising the high-risk nature of the electricity distribution industry is applied. Such factors are described by the HSE guidance when identifying reasonably practicable costs of mitigation [Ref. 8]. This value is not mandated by the Health and Safety Executive (HSE), but they state that they believe that "the greater the risk, the more should be spent in reducing it, and the greater the bias should be on the side of safety". They also suggest that the extent of the bias must be argued in the light of all the circumstances and that the factor is unlikely to be higher than 10. In the Methodology, the factor is set to 6.25 (see Table 224), which serves to cap the current value of preventing a fatality at £10m.

This work aligns to risk analysis carried out within the HSE's "Tolerability of Risk" (ToR) framework [Ref. 9].

Further detail including the probabilities of Lost Time Accidents and Death or Serious Injury and the values for Reference Safety Cost can be found in Appendix D. The cost of an LTA and the cost of a DSI are common for all asset types.

7.4.3 Safety Consequences Factor

The Methodology includes the ability to vary the Safety CoF for an individual asset around the Reference Safety Cost of Failure for its type, based on a consideration of two additional factors; the Type Safety Factor and the Location Safety Factor. These are designed to capture the specific circumstances of individual assets insofar as they are likely to have a material impact on the safety consequences of any failure of the asset and are applied as a combined Safety Consequences Factor to the Reference Safety Cost of Failure. This is shown in EQ. 31.

EQ. 31

Where:

• The Safety Consequences Factor is derived using a lookup value from the location/type matrix shown in Table 225 & Table 226, applying the criteria shown in Section D.2 of Appendix D and an additional Safety Risk Reduction Factor is applied as shown in Table 227.

The requirement to undertake assessments of this type is stated in the ESQCR and the guidance below is adapted from the guidance associated with the regulations.

7.4.3.1 TYPE SAFETY FACTOR

This addresses the principal characteristics of the equipment and its siting.

This can include reflection of the "Nature and situation of equipment" category within the ESQCR risk assessment. Generally, equipment comprising exposed conductors will be higher risk in view of the consequences of persons coming into contact with that equipment. Plant which is fully insulated, or metal enclosed will generally be lower risk. Equipment or plant which is likely to be attractive to vandals or thieves (e.g. terminal Towers) will generally be higher risk than plant which is less attractive to such persons (e.g. single wood poles).

Another characteristic considered for switchgear is the interruption medium and arc flash protection as oil filled switchgear failures can be explosive.

7.4.3.2 LOCATION SAFETY FACTOR

This is taken from the "Nature and situation of surrounding land" test in the ESQCR risk assessment. Here duty holders are required to take a view of the risk of danger from interference with the equipment - whether wilful or accidental - in consideration of the environment in which the equipment is placed.

There are two aspects to this test: firstly, the geography of the land and its features (for example forests, rivers, flat fields, motorway, city streets) and secondly the use of the land (for example agricultural machinery, recreational areas, schools, housing estate).

For example, electrical equipment in housing estates or in close proximity to unsupervised recreational playing fields will generally be at higher risk of danger from interference than equipment situated on sparsely populated land or contained within occupied premises.

7.5 Environmental Consequences

7.5.1 Overview

The Environmental Consequences have been derived with reference to appropriate environmental regulations and stakeholders.

The overall process for deriving the Environmental CoF is shown in Figure 24.

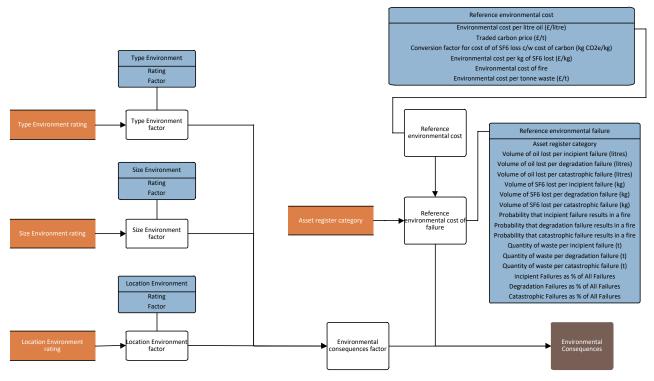


FIGURE 24: ENVIRONMENTAL CONSEQUENCES OF FAILURE

7.5.2 Reference Environmental Cost of Failure

The Environmental CoF value for an asset is derived using a Reference Environmental Cost of Failure, which is modified for individual assets using asset-specific factors. This is based on an assessment of the typical environmental impacts of a failure of the asset in each of its three failure modes; incipient, degraded and catastrophic. The Reference Environmental Cost of Failure that shall be used for each Asset Category is shown in Table 228 in Appendix D.

This assessment considers four factors;

- i) Volume of oil lost;
- ii) Volume of SF6 lost;
- iii) Probability of the event leading to a fire; and
- iv) Quantity of waste produced.

Reference Environmental Cost of Failure = (% of Incipient Failures) × ((Volume of oil lost per Incipient failure × Environmental cost per litre oil (£/litre)) + (Volume of SF₆ lost per Incipient failure × Environmental cost per kg of SF₆ lost (£/kg)) + (Probability of failure leading to a fire per Incipient failure × Environmental cost of fire) + (Quantity of waste produced per incipient failure × Environmental cost per tonne waste (£/t))) + (% of Degraded Failures) × ((Volume of oil lost per Degraded failure × Environmental cost per litre oil (£/litre)) + (Volume of SF₆ lost per Degraded failure × Environmental cost per kg of SF₆ lost (£/kg)) + (Probability of failure leading to a fire per Degraded failure × Environmental cost of fire) + (Quantity of waste produced per Degraded failure × Environmental cost of fire) + (% of Catastrophic Failures) × ((Volume of oil lost per Catastrophic failure × Environmental cost per litre oil (£/litre)) + (Volume of SF₆ lost per Catastrophic failure × Environmental cost per litre oil (£/litre)) + (Volume of SF₆ lost per Catastrophic failure × Environmental cost per litre oil (£/litre)) + (Volume of SF₆ lost per Catastrophic failure × Environmental cost per kg of SF₆ lost (£/kg)) + (Probability of failure leading to a fire per Catastrophic failure × Environmental cost per kg of SF₆ lost (£/kg)) + (Probability of failure leading to a fire per Catastrophic failure × Environmental cost of fire) + Quantity of waste produced per Catastophic failure × Environmental cost of fire) +

EQ. 32

Where:

- Environmental cost per litre oil = £36.08/litre
- Environmental cost per kg of SF₆ lost = £240/kg Which is derived from:
 - Traded carbon price = £10.04/tonne
 - Cost of SF₆ loss c/w cost of carbon = 23,900kg(CO₂)/kg
- Environmental cost of fire = £5,000
- Environmental cost per tonne waste = £150/tonne

The sources for the above costs are shown in Table 17.

Fixed value	Source
Fixed value	Source
	This is derived from the EU trading value for carbon emissions and is consistent with the
Environmental cost per litre oil (£/litre)	value used in Ofgem's RIIO-ED1 Cost Benefit Analysis template (used for the RIIO-ED1
	submissions) (at 2012/13 prices)
	https://www.gov.uk/carbon-valuation (note: 2016 to 2030 DECC's updated traded sector
	carbon values published Oct 2012, 2031 onwards based on DECC carbon values
Traded carbon price (£/t)	published Oct 2011.)
Traded Carbon price (£/t)	http://www.defra.gov.uk/publications/2012/05/30/pb13773-2012-ghg-conversion/ (note:
	figures taken from 2012 Guideline to Defra / DECC's GHG conversion factors for company
	reporting, 'new 2010' factor annex 3 table 3(c).
Conversion factor for cost of SF ₆ loss c/w	
cost of carbon (kg CO₂e/kg)	2011/12 Defra conversion factor (at 2012/13 prices)

TABLE 17: SOURCES OF INFORMATION FOR ENVIRONMENTAL REFERENCE CASE

7.5.3 Environmental Consequences Factors

The Methodology includes the ability to vary the Environmental Consequences value for an individual asset around the Reference Environmental Cost of Failure for its type, based on a consideration of three additional factors; the Type Environmental Factor, the Size Environmental Factor and the Location Environmental Factor. These are designed to capture the specific circumstances of individual assets insofar as they are likely to have a material impact on the Environmental Consequences of any failure of the asset and are applied as a combined Environmental Consequences Factor on the Reference Environmental Cost of Failure.

Environmental Consequences of Failure = Reference Environmental Cost of Failure × Environmental Consequences Factor

Where:

Environmental Consequences Factor

= Type Environmental Factor imes Size Environmental Factor imes Location Environmental Factor

EQ. 34

EQ. 33

7.5.3.1 TYPE ENVIRONMENTAL FACTOR

This Factor allows for an adjustment to be made based on considerations specific to an asset or group of assets at a sub-level of the Asset Register Category. As the Reference Environmental Cost of Failure is built up using the impact from oil & SF_6 the Type Environmental Factor is used to temper the effects for each switchgear type. The modifier values for the Type Environmental Factor can be found in Table 229 in Appendix D.

7.5.3.2 SIZE ENVIRONMENTAL FACTOR

This Factor allows for an adjustment to be made based on a consideration of the size of the asset in question, insofar as the size has a direct and material influence on the scale of Environmental Consequences, e.g. a larger than average Transformer holding a greater quantity of oil than that assumed in the reference case for that asset type. The modifier values for the Size Environmental Factor can be found in Table 230 in Appendix D.

7.5.3.3 LOCATION ENVIRONMENTAL FACTOR

This Factor allows for an adjustment to be made based on an assessment of the environmental sensitivity of the site on which an asset is located. The specific concerns will vary by asset type but include proximity to watercourses and other environmentally sensitive areas. The Factor also recognises any mitigation associated with the asset. The modifier values for the Location Environmental Factor can be found in Table 231 in Appendix D. This Factor is derived by combining separate Factors relating to proximity to a watercourse (Proximity Factor) and the presence of a bund (Bunding Factor) as shown in EQ. 35.

Location Environment Factor = **Proximity Factor** × **Bunding Factor**

EQ. 35

7.6 Network Performance Consequences

7.6.1 Overview

The Network Performance CoF for an asset is derived from one of two approaches, depending on the voltage of the asset considered. For all assets operating at 20kV and below, the LV & HV Asset Consequences process is followed. For all assets operating above 20kV, the EHV & 132kV Asset Consequences process is followed.

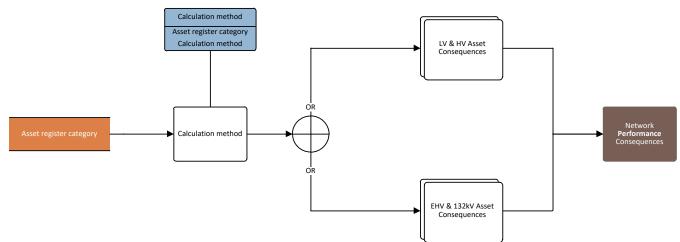


FIGURE 25: NETWORK PERFORMANCE CONSEQUENCES OF FAILURE

7.6.2 Network Performance Consequences (LV & HV)

For LV and HV assets, a Reference Network Performance Cost of Failure appropriate to the Asset Category is initially applied. The resulting value can then be modified for individual assets in two ways:-

- i) directly, based on the ratio of customers connected to an individual asset to the equivalent figure used in the average value; and/or
- ii) via the application of a Customer Sensitivity Factor to reflect customer characteristics (if appropriate).

Applying these Factors results in an LV or HV Asset Consequence value that reflects the network consequence characteristics of an individual asset of that type.

The overall process for deriving the Network Performance CoF is shown in Figure 26.

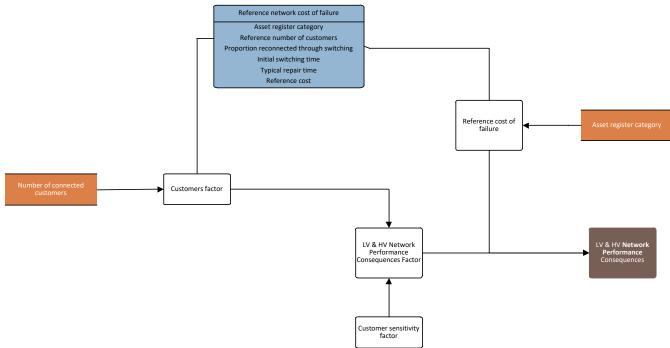


FIGURE 26: NETWORK PERFORMANCE ASSET CONSEQUENCES OF FAILURE (LV & HV)

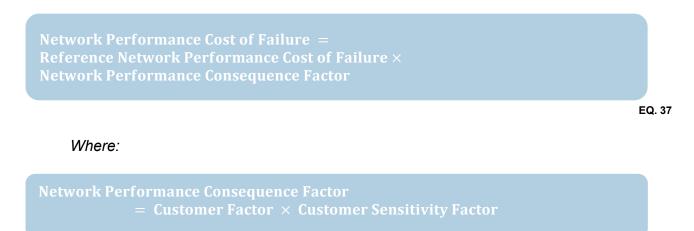
7.6.2.1 REFERENCE NETWORK PERFORMANCE COST OF FAILURE (LV & HV) The Reference Network Performance Cost of Failure is based on an assessment of the typical network costs incurred by a failure of the asset as measured through its impact in relation to the number of customers interrupted and the duration of those interruptions. For regulatory purposes, this is captured via the IIS mechanism.

An assessment is made of the typical numbers of customers interrupted by a failure, and the typical time to restore all supplies. This is based on a typical number of customers being connected to the section of distribution network that would be affected by failure of the asset (the Reference Number of Connected Customers).

The numbers of customers interrupted and customer minutes without supply are evaluated and multiplied by the relevant cost of a customer interruption (Cost of CI) and cost of a customer minute lost (Cost of CML) to produce a typical cost per failure for a given Reference Number of Connected Customers.

Reference Network Performance Cost of Failure =	
[(Cost of CML $ imes$ 60 $ imes$ Reference Number of CC $ imes$ Switching Time $ imes$ (100%)	
- % of CC restored through immediate switching))	
+ (Cost of CML $ imes$ 60 $ imes$ Reference Number of CC $ imes$ Restoration Time $ imes$ (100% –	
% of CC restored after manual switching))	
+ (Cost of CI $ imes$ Reference Number of CC $ imes$ (100% –	
% of CC restored through immediate switching))] $ imes$ % of failures that result in	
interruption to supply	
	EO 26

EQ. 36


Where:

- CC = Connected Customers
- Switching Time and Restoration Time are durations (in hours)

Further explanation on the derivation of the values for the Reference Network Performance Cost of Failure (LV & HV) can be found in section D.4.1 in Appendix D. The values of Reference

Network Performance Cost of Failure (LV & HV) by Asset Category can be found in in Appendix D.

7.6.2.2 NETWORK PERFORMANCE FACTORS (LV & HV) The Reference Network Performance Cost of Failure can then be modified on an asset by asset basis as shown in EQ. 37.

EQ. 38

Customer Factor

This Factor is used to reflect the number of customers impacted by failure of an individual asset, relative to the reference number of customers used in the derivation of the Reference Network Performance Cost of Failure.

This is applied as a direct Factor, i.e. not via a lookup table. For example, if the number of customers used in the derivation of the Reference Network Performance Cost of Failure is 100, but for a specific example it is 80 (or 120), then a modifying factor of 0.8 (or 1.2) would be applied.

EQ. 39

Where a DNO identifies that the customers fed by an individual asset have an exceptionally high demand per customer, then the No. of Customers used in the derivation of EQ. 39 may be derived by applying an adjustment to the actual number of customers fed by the asset as shown in Table 18. This adjustment recognises that for high demand customers the cost of a customer interruption and a customer minute lost may not reflect the value of lost load to the customer. DNOs can elect whether to apply this adjustment within their implementation of the Methodology.

Maximum Demand on Asset / Total Number of Customers fed by the Asset (kVA per Customer)	No. of Customers to be used in the derivation of Customer Factor
< 50	1 x actual number of customers fed by the asset
≥ 50 and < 100	25 x actual number of customers fed by the asset
≥ 100 and < 500	100 x actual number of customers fed by the asset
≥ 500 and < 1000	250 x actual number of customers fed by the asset
≥ 1000 and < 2000	500 x actual number of customers fed by the asset
≥ 2000	1000 x actual number of customers fed by the asset

TABLE 18: CUSTOMER NUMBER ADJUSTMENT FOR LV & HV ASSETS WITH HIGH DEMAND CUSTOMERS

The default value for the Customer Factor is 1.

Customer Sensitivity Factor

The Customer Sensitivity Factor is used to reflect circumstances where the customer impact is increased due to customer reliance on electricity (e.g. vulnerable customers). DNOs may use this factor at their discretion in order to modify the Network Performance Consequence Factor.

The default value for the Customer Sensitivity Factor is 1. Individual DNOs are provided with the freedom within the Methodology to apply a Customer Sensitivity Factor, other than the default, to the Network Performance Consequences (LV & HV) for any asset, provided that:-

- i) the individual DNO documents all instances where a Customer Sensitivity Factor different from the default is applied within their individual Network Asset Indices Methodology; and
- ii) The Customer Sensitivity Factor shall not be less than 1, nor greater than 2.

7.6.3 Network Performance Consequences (EHV & 132kV)

Similarly, for EHV and 132kV assets, asset-specific Network Performance Consequence Factors are applied to the Reference Network Performance Cost of Failure in order to calculate the Network Performance Consequences associated with an individual asset.

For these assets, the Methodology reflects the fact that redundancy is usually designed into networks at these voltages due to the size of demand group they supply.

A significant proportion of these networks are constructed so that the supply to customers is secure for a single outage of any circuit within the network. For the purposes of the Methodology a network shall be considered secure if, in the event of a first circuit outage, there is either no interruption of supply to customers or supply is restored immediately through automatic switching as defined in ENA Engineering Recommendation P2/6 ('Security of Supply').

Once a first circuit outage has occurred within a secure network, there may be parts of the network that would experience a loss of supply if a further circuit outage were to occur. The load that could be expected to be impacted (i.e. would experience a loss of supply) during such a further circuit outage is referred to as Load at Risk.

Within EHV and 132kV networks, there may also be some parts of the network where the supply to customers is not secure for a first circuit outage event. In such cases, a first circuit outage will directly impact any connected customers and restoration is achieved via switching in line with the timescales specified in Engineering Recommendation P2/6 for that demand group.

The methodology for determining Network Performance Consequences for EHV and 132kV assets enables both these types of network to be recognised.

The overall process for deriving the Network Performance Cost of Failure is shown in Figure 27.

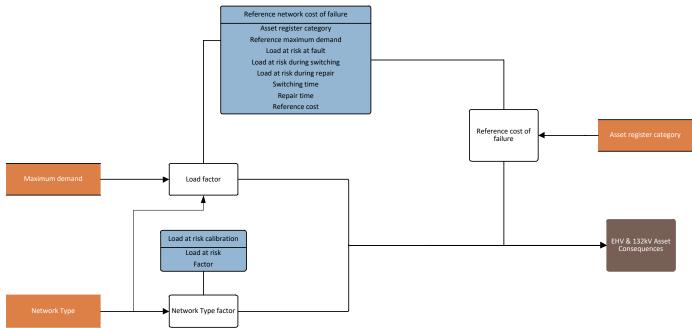


FIGURE 27: NETWORK PERFORMANCE CONSEQUENCES OF FAILURE (EHV & 132KV)

7.6.3.1 REFERENCE NETWORK PERFORMANCE COST OF FAILURE (EHV & 132KV)

The Reference Network Performance Cost of Failure is based on an assessment of the amount of Load at Risk during three stages of failure, and the typical duration of each stage:

- i) During fault (T1): this is the time-period between initial circuit protection trip operation and automatic switching to reconfigure the network;
- ii) During initial switching (T2): this is the time-period during which further manual network switching is undertaken to reconfigure the network to minimise the risk associated with a further circuit outage; and
- iii) During repair time (T3).

The Load at Risk is evaluated based on a typical value of maximum demand under normal running conditions.

The load at risk is then multiplied by the relevant Value of Lost Load (VoLL) figure to derive a typical Reference Network Performance Cost of Failure for these assets, taking account of the probability of a further circuit outage.

Reference Network Performance Cost of Failure = ((Load at risk in T1 × Duration of T1) + (Load at risk in T2 × Duration of T2) + (Load at risk in T3 × Duration of T3)) × % of failures that result in an unplanned outage × Probability of further coincident outage × VoLL

EQ. 40

The value of VoLL used is consistent with the values for Cost of CI and Cost of CML used in the evaluation of the Reference Network Performance Cost of Failure for LV and HV assets. Therefore, the evaluation of the Reference Network Performance Cost of Failure for EHV and 132kV assets is consistent with the evaluation of the impact in distribution assets.

Further explanation of the derivation of the Reference Network Performance Cost of Failure for EHV and 132kV assets can be found in Section D.4.2 in Appendix D.

7.6.3.2 NETWORK PERFORMANCE FACTORS (EHV & 132KV) The Network Performance CoF is derived on an asset by asset basis as shown in EQ. 41.

Network Performance Consequences of Failure =Reference Network Performance Cost of Failure imes Load Factor imes Network Type Factor

EQ. 41

Load Factor

This Factor allows for the Network Performance CoF to reflect the actual load at risk associated with the failure of the asset under consideration, relative to the value of maximum demand used to create the reference value.

The Load Factor is determined as shown in EQ. 42 (i.e. not via a lookup table).

Load Factor = Actual Load at Risk Associated with the Failure of the Asset Under Consideration Maximum Demand Used To Derive Reference Network Performance Cost of Failure

EQ. 42

For example, if the Reference Network Performance Cost of Failure has been derived using a reference maximum demand of 12MVA, but for a specific asset the actual load at risk was 6MVA then a Load Factor of 0.5 would be applied.

The values of maximum demand used in derivation of the Reference Network Performance Cost of Failure can be found in Table 235 in Appendix D.

Where the actual load is not known, the default value for Load Factor is dependent on the security of supply of the associated network.

A default Load Factor of 0.5 shall be applied where an individual asset is located in a network that is not secure for a first circuit outage event that would result from failure of the asset (i.e. the network would be considered not secure if the load normally supplied by the asset would be interrupted and not restored automatically, in such an event).

A default Load Factor of 1 shall apply to assets in secure networks or where the security of the network is unknown.

Network Type Factor

This Network Performance CoF is derived on an asset by asset basis by the application of a Network Type Factor to take account of the security of supply afforded by the topology of the network in which the individual asset is located.

A Network Type Factor of 2.5 shall be applied where an individual asset is located in a network that is not secure for a first circuit outage event that would result from failure of the asset (i.e. the network would be considered not secure if the load normally supplied by the asset would be interrupted and not restored automatically, in such an event).

A Network Type Factor of 1 shall apply to assets in secure networks.

The default value for Network Type Factor is 1.

8. REFERENCES

8.1 A Note on Referencing

The content in many of the tables consists of factors and values which were decided (by agreement or by calculation) by internal working group agreement. There are also a number of table values determined by the RIGs. Where the values have been dictated otherwise or by external sources there is an associated numbered reference.

This section of the document lists the external references and explains which tables require an external reference. It also describes, where that is not the case, what is meant by the reference to an "internal working group agreement".

8.2 Reference to Internal Working Group Agreement

Decisions governing these values were made during a model calibration exercise in 2015 which pragmatically captured engineering experience and reliability-based concepts. Every table in the document was fully examined and discussed by the group.

The choice of the factors themselves came from DNO shared information about what factors existed in their current CBRM models. These models were built within the DNOs over the previous two decades. The principles guiding the decision included ensuring that DNOs collecting more information than others were not held back from continuing to do so, and to avoid duplication of factors that in essence indicated the same degradation mechanism.

The parameters for combination were also agreed collectively based on similar principles, so that while DNOs collecting more information than others should not be prevented from using their better information, DNOs collecting less should not be put in a position of not being able to achieve the kinds of Health Scores that accurately described their poorest assets. Hence the use of an MMI approach. The number of factors that can be combined also related to the number of existing factors for an asset category.

In terms of calibrating the weightings, experience with current models was drawn upon in situations where the combination method was the same as that for common methodology. The results of testing were then used so that if entire populations were tending to bias at one extreme, the weightings were revised to make sure that they resulted in a spread that was reasonable.

8.3 Table Reference Breakdown

Table 1, Table 2 and Table 3 summarise asset categories governed by the RIGs. This is referred to in the descriptive text above the tables.

The failure type descriptions in Table 4 were agreed by the working group.

Table 5 and Table 6 show the PoF bandings and were agreed by the working group. The calibration exercise for these considered the speed at which an asset moves through each band and judged that against engineering experience.

Table 7 shows the CoF bandings. It is governed by the RIGs and comes out of previous work by the Asset Health and Criticality working group that was incorporated in the RIGs for the RIIO-ED1 business plan submissions.

Table 8 to Table 15 show PoF factors for each of location, duty and condition; and parameter information for combining these factors within the methodology. These values were agreed by the working group.

Table 16 to Table 18 relate to CoF. Table 16 is merely a summary of the Reference Costs of Failure which are described in detail in the Appendix D tables. As CoF values are very much governed by external sources of information there are appropriate references to these in the descriptive text along with Table 17 which explicitly lists the environmental sources. Table 18 shows customer bandings agreed by the working group.

Table 19 shows Functional Failure Definitions agreed by the working group. In this case agreement was based on an information gathering exercise across the DNOs of failure information derived from risk management over many years, including failure modes and effects analysis and a familiarity with the history of defects and faults for each asset category.

Table 20 summarises asset lives as agreed by the working group following an information sharing exercise. Where there was a wide range in the same asset category the group looked at the mix of asset types that was driving the difference and determined appropriate sub-types accordingly. Work on asset lives was carried out in substantial detail in DNOs going back to before DPCR4 and they have been used and updated in annual RRP submissions during DPCR5 and RIIO-ED1.

Table 21 shows PoF curve parameters which were calculated by the working group. Their derivation is described in Section 6.1.2 and they come from shared DNO data consisting of the observed number of functional failures for each asset category per annum, considering Incipient, Degraded and Catastrophic Failures; from the 2014/15 Health Index distributions; and from the total volumes of assets within the population.

Table 22 to Table 34 show location and Duty Factors and calibrations agreed by the working group.

Table 35 to Table 202 show Observed Condition and Measured Condition Factors and calibrations which were agreed by the working group. The decisions for these were based on a combination of obvious logical rules, engineering experience, and testing using the common methodology spreadsheet models. The obvious logical rules are that:-

- i) The maximum factor value will not push the Current Health Score above its cap of 10;
- ii) Weightings reflect condition so that, for example, a poor state will have a higher weighting than a moderate state for example;
- iii) The distance between two states describe the engineering conditions so for example, if corrosion indicating structural damage is much more serious than corrosion indicating cosmetic damage then the weightings have a proportionate distance between them.
- iv) The number of states is calculable and meaningful and in sync with DNO data collection.
- v) Improvement factors are also appropriate in situations where signs of wear would have been expected indicating a Health Score better than initially indicated from age and expected life.
- vi) There should be a spread across Health Index bands within a representative asset population.

For the measured condition factor values it was also recognised that the condition criteria tend to be a function of how results from the test equipment are categorised in practice. For example, partial discharge typically might have a high, medium and low result.

Table 203 to Table 215 relate to transformer oil sampling and are covered by external references 3 to 5.

Table 216 is for the Ageing Reduction Factors and the basis for these is covered by reference 2.

Table 217 in Appendix C is covered by the RIGs working group for the categories and the working group agreed what HI factors were affected by the intervention.

Table 218 to Table 235 in Appendix D show the Criticality Factors, their Reference Cost of Failure values, and how asset specific factors are weighted. Environmental, Safety and Network Performance Consequence Factors and criteria reference external sources as is already well described in Section 7. Financial Consequence Factors came from working group agreement based on an understanding of the Financial Factors at play in practice in the different DNOs.

The reference values are derived as described in Section 7, so the tables just show the results of calculations carried out using the externally given costs and the working group agreed assumptions about derivation.

Calibration decisions for the asset specific factors were made collectively by the working group, based on the logic that as things get more critical their weightings increase in a way that is proportionate to the underlying engineering criticality being described.

Table 236 to Table 241 in Appendix E show the reference values associated with the CoF and PoF weightings for the Criticality Index and Health Index bands as well as the Risk Matrix weightings, typical forecast aging rates all referenced in Section 5 with regard to the calculated Risk Index associated with the Long Term Risk.

8.4 Document References

- 1. RIIO-ED1 regulatory instructions and guidance: Annex A Glossary <u>https://www.ofgem.gov.uk/ofgem-publications/95310/annexaglossary-pdf</u>
- 2. Reliability Centred Maintenance, John Moubray, 1991, Butterworth Heinemann.
- 3. BS EN 60422:2013 "Mineral insulating oils in electrical equipment Supervision and maintenance guidance"
- 4. Expert System for Assessing Transformer Condition, EA Technology Report No. 4969, Project S0446, (M Black, J R Brailsford, D Hughes & M I Lees Sept 1999)
- 5. BS EN 60599:1999 "Mineral oil-impregnated electrical equipment in service Guide to the interpretation of dissolved and free gases analysis"
- 6. Electricity Safety, Quality and Continuity Regulations 2002, as amended in 2006 (ESQCR). <u>http://www.legislation.gov.uk/uksi/2002/2665/contents/made</u>
- 7. Current HSE cost models. http://www.hse.gov.uk/statistics/cost.htm
- 8. Current guidance about what should and should not be considered in a duty holder's cost benefit analysis (CBA) for health and safety ALARP determinations. http://www.hse.gov.uk/risk/theory/alarpcheck.htm
- Reducing risks, protecting people HSE's decision-making process (first published in May 1999). <u>http://www.hse.gov.uk/risk/theory/r2p2.pdf</u>
- 10. The National Galvanizers Association https://www.galvanizing.org.uk/corrosion-map/
- 11. HM Treasury publication <u>The Green Book</u> <u>https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment</u> <u>data/file/685903/The Green Book.pdf</u>

APPENDIX A FUNCTIONAL FAILURE DEFINITIONS

Asset Category	Function	Failure modes	Catastrophic Failure	Degraded Failures	Incipient Failures	Functional failures excluded
LV Circuit Breaker	Measure and break unsafe levels of current (over current), make load current, and provide a point of electrical isolation.	Failing to open on a fault. Failing to close reliably. Failing to open during manual operation. Failure to supply load current (i.e. failure during normal operating conditions). Opens Spuriously under normal conditions. Opens Intermittently (Faulty).	Failure of Housing. Disruptive Failure Resulting from Insulation Breakdown.	Nuisance tripping or failure to operate when required due to: - damage to contacts - loose internal connections -Damage to mechanism and drive rods.	Nuisance tripping or failure to operate when required due to: - Maladjusted linkage.	Failure of protection module. Failure of SCADA.
LV Pillar (ID)	Provide a number of points of access to LV Cable Systems for electrical connection, isolation and flexibility with network reconfiguration. Depending on the complexity	Failing to close reliably. Failing to open during manual operation. Failure to supply load current (i.e. failure during	Failure of Housing. Disruptive Failure Resulting from Insulation Breakdown requiring the	Failure of Housing requiring repair. Nuisance tripping or Failure of an LV Pillar's Fuse, MCB or RCBO to operate when required	Nuisance tripping or Failure of an LV Pillar's Fuse, MCB or RCBO to operate when required due to: - incorrect fuse/breaker	Contact damage due to incorrect operation of board.
LV Pillar (OD at Substation / LV Pillar (OD not at a Substation)	of pillar they may also offer monitoring and protection (fuse or circuit breaker) capabilities.	normal operating conditions).	replacement of one or all ways.	due to: - deteriorated fuse carriers - breaker stuck closed.	rating - breaker not latching closed.	

TABLE 19: FUNCTIONAL FAILURE DEFINITIONS

Asset Category	Function	Failure modes	Catastrophic Failure	Degraded Failures	Incipient Failures	Functional failures excluded
LV Board (WM)	Provide a number of points of access to LV Cable Systems for electrical connection, isolation and flexibility with network reconfiguration. Depending on the complexity of LV Board, they may also offer monitoring and protection (fuse or circuit breaker) capabilities.	Failing to open on a fault. Failing to close reliably. Failing to open during manual operation. Failure to supply load current (i.e. failure during normal operating conditions). Opens Spuriously under normal conditions. Opens Intermittently (Faulty).	Disruptive Failure Resulting from Insulation Breakdown.	Nuisance tripping or failure to operate when required due to: - damage to contacts - moisture ingress - deteriorated fuse carriers.	Nuisance tripping or failure to operate when required due to: - damage to contacts - loose internal connections - failure of protection module.	Failure of housing. Contact Damage due to Incorrect operation of Board.
LV UGB	Provide a number of points of access to LV Cable Systems for electrical connection, isolation and flexibility with network reconfiguration. Depending on the complexity of the LV Box, they may also offer monitoring and protection (fuse or circuit breaker) capabilities.	Failing to open on a fault (if used in this mode. Failing to close reliably. Failing to open during manual operation. Failure to supply load current (i.e. failure during normal operating conditions). Opens Spuriously under normal conditions. Opens Intermittently (Faulty).	Disruptive Failure Resulting from Insulation Breakdown.	Failure to be operable when required due to: - damage to contacts - moisture ingress - deteriorated links.	Failure to be operable when required due to: - damage to contacts - loose internal connections.	Failure of housing. Contact Damage due to Incorrect operation of Box.

Asset Category	Function	Failure modes	Catastrophic Failure	Degraded Failures	Incipient Failures	Functional failures excluded
HV Switchgear (GM) – Primary / HV Switchgear (GM) - Distribution	Carry, make or break continuous load or fault current. Maintain or interrupt voltage on all three phases. Isolation & Earthing of Cables & Plant. Measurement of current and voltage.	Does not open or close on command (Where this is associated with the Breaker and not the control system). Mechanical Failure. Electrical Failure (Auxiliary & Control). Electrical Failure (Main Circuit).	Disruptive Failure Resulting from Insulation Breakdown.	SOP preventing operation. Failure to operate when required due to: - Failure of Mechanism - Protection module - CT Failure - VT Failure - Stuck Breaker.	Failure to operate when required due to: - Low Gas Lockout or Vacuum bottle condition.	Unable to withstand impulse voltage. Unable to contain the insulating medium. Does not allow switch tank to breath. Unable to support its own weight. Does not provide a connection to the substation earth mat.
EHV Switchgear (GM)	Carry, make or break continuous load or fault current. Maintain or interrupt voltage on all three phases. Isolation & Earthing of Cables & Plant. Measurement of current and voltage.	Does not open or close on command (Where this is associated with the Breaker and not the control system). Mechanical Failure. Electrical Failure (Auxiliary & Control). Electrical Failure (Main Circuit).	Disruptive Failure Resulting from Insulation Breakdown.	SOP preventing operation. Failure to operate when required due to: - Failure of Mechanism - Protection module - CT Failure - VT Failure - Stuck Breaker.	Failure to operate when required due to: - Low Gas Lockout or Vacuum bottle condition.	Unable to withstand impulse voltage. Unable to contain the insulating medium. Does not allow switch tank to breath. Unable to support its own weight. Does not provide a connection to the substation earth mat. Failure of civil structures or associated disconnectors. Any asset classed by RIG definition as EHV Swgr Other.

Asset Category	Function	Failure modes	Catastrophic Failure	Degraded Failures	Incipient Failures	Functional failures excluded
132kV CBs	Carry, make or break continuous load or fault current. Maintain or interrupt voltage on all three phases. Isolation & Earthing of Cables & Plant. Measurement of current and voltage.	Does not open or close on command (Where this is associated with the Breaker and not the control system). Mechanical Failure. Electrical Failure (Auxiliary & Control). Electrical Failure (Main Circuit).	Disruptive Failure Resulting from Insulation Breakdown.	SOP preventing operation. Failure to operate when required due to: - Failure of Mechanism - Protection module - CT Failure - VT Failure - Stuck Breaker.	Failure to operate when required due to: - Low Gas Lockout or Vacuum bottle condition.	Unable to withstand impulse voltage. Unable to contain the insulating medium. Does not allow switch tank to breath. Unable to support its own weight. Does not provide a connection to the substation earth mat. Failure of civil structures or associated disconnectors. Any asset classed by RIG definition as EHV Swgr Other.
HV Transformer (GM)	Step up or step down and provide a secondary output voltage which is within statutory limits. Carry full load current when required. Carry through fault current when required.	Tapchanger, bushing, windings, core, tank or insulation failure.	Failure of the main internal components - windings, core or insulation.	Failure of the bushing, cable termination, including box and conservator tank.	Failure of the Tapchanger.	Oil condition corrected by an oil change and not re-conditioning, levels and leaks. Cable connection to controlling switchgear. Civil structure related failures.

Asset Category	Function	Failure modes	Catastrophic Failure	Degraded Failures	Incipient Failures	Functional failures excluded
EHV Transformer / 132kV Transformer	Step up or step down and provide a secondary output voltage which is within statutory limits. Carry full load current when required. Carry through fault current when required.	Tapchanger, bushing, windings, core, tank, insulation or control/monitoring failure.	Failure of the tank or main internal components - windings, core or insulation.	Failure of the bushing, cable termination conservator tank and associated radiator.	Failure of the Tapchanger.	Oil condition corrected by an oil change and not re-conditioning, levels and leaks. CT's, VT's and on tank unit auxiliary transformers associated with the unit NER's and NEX's Neutral displacement VT's. Cable and busbar connection to controlling switchgear. Civil structure related failures. Buchholz.
Poles	Support electrical equipment in compliance with the ESQCR and Construction Regulations.	Decayed Pole. Decayed Struts. Snapped Stays.	Any structure whose components have either failed (broken) or whose residual strength has decreased to a level where immediate replacement of all or part of the structure is required.	Any structure whose components have a residual strength such that replacement is required within the timescale defined by the Company.	Vermin Damage resulting in Factor of Safety reduction requiring an intervention.	Broken Conductor. Broken or damaged fittings. Damaged or non- functioning plant. Broken or damaged insulation. Missing or degraded safety signs and anti climbing fixtures. Leaning poles where statutory clearances are not impacted. Cable boxes and platforms, including sealing ends.

Asset Category	Function	Failure modes	Catastrophic Failure	Degraded Failures	Incipient Failures	Functional failures excluded
Towers	Support electrical equipment in compliance with the ESQCR.	Corrosion or distortion of the structure, i.e. bent member, failing foundations.	Any structure whose components have either failed (broken) or whose residual strength has decreased to a level where immediate replacement of all or part of the structure is required.	Any component of the structure whose condition is such that it prevents normal operation of the Tower, or degrades the residual strength of the Tower, requiring an intervention with in a defined period.	Corrosion to minor Tower components and land movements degrading the potential of the Towers stability.	Broken Conductor. Broken or damaged fittings. Broken or damaged insulation. Missing or degraded safety signs and anti- climbing fixtures. Cable boxes and platforms, including sealing ends.
Fittings / OHL Conductor	Carry load and fault current without annealing or sagging below the ESQCR limit. Maintain continuity under normal and fault conditions. Provide phase-phase and phase-earth insulation.	Flashover. Insulation failure. Corroded Conductor. Corroded Jumper. Corroded Fitting.	Loss of structural integrity of any component associated with an overhead line supported on Steel Tower, excluding any associated Tower mounted plant, such that the residual strength of the component required immediate intervention.	Loss of structural integrity of any component associated with an overhead line supported on the Tower, excluding any associated Tower mounted plant, such that the residual strength of the component required intervention within a prescribed timescale.	Cracked insulator	Loss of protection. Loss of plant. Earthing. Any issues relating to the support, safety notices and anti-climbing guards. Conductor icing which does not result in permanent damage to the conductor. Cable boxes and platforms (including sealing ends).
Pressurised Cable	Carry load and fault current safely and reliably, without overheating or causing damage to the environment.	Oil or Gas leak / Top up. Cable Fault. Joint Failure.	Cable Fault. Joint Fault.	Accessory or joint failure causing loss of fluid.	Pressure gauges. Sheath deterioration.	Sheath damage and or repair. Third party damages.
Submarine Cables	Carry load and fault current safely and reliably, without overheating or causing damage to the environment.	Cable Fault. Joint Failure.	Cable Fault. Joint Fault.	N/A	N/A	Sheath damage and or repair. Third party damages.

Asset Category	Function	Failure modes	Catastrophic Failure	Degraded Failures	Incipient Failures	Functional failures excluded
Non Pressurised Cable	Carry load and fault current safely and reliably, without overheating or causing damage to the environment.	Cable fault. Joint failure.	Cable Fault. Joint Fault.	N/A	N/A	Sheath damage and or repair. Third party damages.
Concrete Structures	Carries a piece of switchgear and is an integral part of the plant. This excludes plinths for plant which is designed with legs or other types of support for the operable parts of the plant and all power transformers	Loss of residual strength or loss of stability.	Failure of the structure resulting in the plant item becoming unstable, the plant tilts or in any other way cannot be operated as a result of the condition of the concrete.	Loss of section. Cracking and spilling of the concrete such that the residual strength is between 80 and 100% of current condition.	Loss of chemical structure and hence reduction in strength.	Plinths. Auxiliary structures not made of concrete. Busbar supports.

APPENDIX B CALIBRATION – PROBABILITY OF FAILURE

B.1 Normal Expected Life

TABLE 20: NORMAL	EXPECTED LIFE

Asset Register Category	Sub-division	Normal Expected Life
	Concrete	60
	Steel	50
LV Poles	Wood (water soluble copper salt treated; excluding CCA)	25
	Wood (other)	55
	Other (e.g. fibreglass)	80
LV Circuit Breaker		60
LV Pillar (ID)		60
LV Pillar (OD at Substation)		60
LV Pillar (OD not at a Substation)		60
LV Board (WM)		60
LV UGB		55
LV Board (X-type Network) (WM)		60
	Concrete	60
	Steel	50
6.6/11kV Poles	Wood (water soluble copper salt treated; excluding CCA)	25
	Wood (other)	55
	Other (e.g. fibreglass)	80
	Concrete	60
	Steel	50
20kV Poles	Wood (water soluble copper salt treated; excluding CCA)	25
	Wood (other)	55
	Other (e.g. fibreglass)	80
HV Sub Cable		60
6.6/11kV CB (GM) Primary		55*
6.6/11kV CB (GM) Secondary		55*
6.6/11kV Switch (GM)		55
6.6/11kV RMU		55
6.6/11kV X-type RMU		55
20kV CB (GM) Primary		*
20kV CB (GM) Secondary		55 [°] 55 [*]
20kV Switch (GM)		55
20kV RMU		55
6.6/11kV Transformer (GM)		60
20kV Transformer (GM)		60
	Concrete	60
	Steel	50
33kV Pole	Wood (water soluble copper salt treated; excluding CCA)	25
	Wood (other)	55
	Other (e.g. fibreglass) Concrete	80 60
	Steel	50
66kV Pole	Wood (water soluble copper salt treated; excluding CCA)	25
	Wood (other)	55
	Other (e.g. fibreglass)	80

Asset Register Category	Sub-division	Normal Expected Life
	ACSR - greased	55
	ACSR - non-greased	50
33kV OHL (Tower Line) Conductor	AAAC	60
	Cad Cu	50
	Cu	70
	Other	50
	Steelwork	80
	Foundation - Fully Encased Concrete	95
33kV Tower	Foundation - Earth Grillage	60
	Paint System - Galvanising	30
	Paint System - Paint	20
33kV Fittings		40
	ACSR - greased	55
	ACSR - non-greased	50
	AAAC	60
66kV OHL (Tower Line) Conductor	Cad Cu	50
	Cu	70
	Other	50
	Steelwork	80
	Foundation - Fully Encased Concrete	95
66kV Tower	Foundation - Earth Grillage	60
ookv Tower		30
	Paint System - Galvanising	
0011/ 5 10	Paint System - Paint	20
66kV Fittings		40
	Aluminium sheath - Aluminium conductor	100
33kV UG Cable (Non Pressurised)	Aluminium sheath - Copper conductor	100
	Lead sheath - Aluminium conductor	100
	Lead sheath - Copper conductor	100
	Aluminium sheath - Aluminium conductor Aluminium sheath - Copper conductor	75
33kV UG Cable (Oil)	Lead sheath - Aluminium conductor	80
		80
	Lead sheath - Copper conductor	
	Aluminium sheath - Aluminium conductor	65
33kV UG Cable (Gas)	Aluminium sheath - Copper conductor	70
	Lead sheath - Aluminium conductor	75
	Lead sheath - Copper conductor	75
	Aluminium sheath - Aluminium conductor	100
	Aluminium sheath - Copper conductor	100
	Lead sheath - Aluminium conductor	100
66kV UG Cable (Non Pressurised)	Lead sheath - Copper conductor	100
	Aluminium sheath - Aluminium conductor	75
	Aluminium sheath - Copper conductor	75
66kV UG Cable (Oil)	Lead sheath - Aluminium conductor	80
	Lead sheath - Copper conductor	80

Asset Register Category	Sub-division	Normal Expected Life
	Aluminium sheath - Aluminium conductor	65
(Car)	Aluminium sheath - Copper conductor	70
66kV UG Cable (Gas)	Lead sheath - Aluminium conductor	75
	Lead sheath - Copper conductor	75
EHV Sub Cable		60
33kV CB (Air Insulated Busbars)(ID) (GM)		60 [*]
33kV CB (Air Insulated Busbars)(OD) (GM)		50*
33kV CB (Gas Insulated Busbars)(ID)(GM)		60 [*]
33kV CB (Gas Insulated Busbars)(OD)(GM)		50
33kV Switch (GM)		55
33kV RMU		55
66kV CB (Air Insulated Busbars)(ID) (GM)		50
66kV CB (Air Insulated Busbars)(OD) (GM)		55
66kV CB (Gas Insulated Busbars)(ID)(GM)		55
66kV CB (Gas Insulated Busbars)(OD)(GM)		50
	Transformer - Pre 1980	60
33kV Transformer (GM)	Transformer - Post 1980 Tapchanger	50 60
	Transformer - Pre 1980	60
66kV Transformer (GM)	Transformer - Post 1980	50
	Tapchanger	60
	ACSR - greased	55
	ACSR - non-greased	50
132kV OHL (Tower Line) Conductor	AAAC	60
	Cad Cu	50
	Cu	70
	Other	50
	Steelwork	80
	Foundation - Fully Encased Concrete	95
132kV Tower	Foundation - Earth Grillage	60
	Paint System - Galvanising	30
	Paint System - Paint	20
132kV Fittings		40
	Aluminium sheath - Aluminium conductor	100
132kV UG Cable (Non Pressurised)	Aluminium sheath - Copper conductor	100
132KV UG Cable (Non Fressunseu)	Lead sheath - Aluminium conductor	100
	Lead sheath - Copper conductor	100
	Aluminium sheath - Aluminium conductor	75
132kV UG Cable (Oil)	Aluminium sheath - Copper conductor Lead sheath - Aluminium conductor	<u>75</u> 80
	Lead sheath - Copper conductor	80
	Aluminium sheath - Aluminium conductor	65
132kV UG Cable (Gas)	Aluminium sheath - Copper conductor Lead sheath - Aluminium conductor	70 75
	Lead sheath - Copper conductor	75
132kV Sub Cable		60
132kV CB (Air Insulated Busbars)(ID) (GM)		60
132kV CB (Air Insulated Busbars)(OD) (GM)		50
132kV CB (Gas Insulated Busbars)(ID) (GM)		60
		00

Asset Register Category	Sub-division	Normal Expected Life
	Transformer - Pre 1980	60
132kV Transformer (GM)	Transformer - Post 1980	50
	Tapchanger	60

* The Normal Expected Life will be increased where applicable in accordance with Table 217 for assets that have been refurbished as specified in Appendix C.

B.2 PoF Curve Parameters

TABLE 21: POF CURVE PARAMETERS					
Functional Failure Category	K-Value	C-Value	Health Score Limit		
LV UGB	0.0077%	1.087	4		
LV Circuit Breaker	0.0041%	1.087	4		
LV Pillar (ID)	0.0046%	4.007	4		
LV Pillar (OD at Substation) / LV Pillar (OD not at a Substation)	0.0046%	1.087	4		
LV Board (WM)	0.0069%	1.087	4		
HV Switchgear (GM) - Primary	0.0052%	1.087	4		
HV Switchgear (GM) - Distribution (GM)	0.0067%	1.087	4		
EHV Switchgear (GM) (33kV & 22kV assets only)	0.0223%	1.087	4		
EHV Switchgear (GM) (66kV assets only)	0.0512%	1.087	4		
132kV CBs	0.0431%	1.087	4		
HV Transformer (GM)	0.0078%	1.087	4		
EHV Transformer/ 132kV Transformer	0.0454%	1.087	4		
Poles	0.0285%	1.087	4		
Towers	0.0545%	1.087	4		
Fittings	0.0096%	1.087	4		
OHL Conductor	0.0080%	1.087	4		
Pressurised Cable (EHV UG Cable (Oil) and 132kV UG Cable (Oil))	2.0944%	1.087	4		
Pressurised Cable (EHV UG Cable (Gas) and 132kV UG Cable (Gas))	4.5036%	1.087	4		
Submarine Cables	0.0202%	1.087	4		
Non Pressurised Cable	0.0658%	1.087	4		

B.3 Location Factor

B.3.1 General

	TAE	BLE 22: DISTANCE	FROM CO	AST FAC	TOR LOOKUP 1	TABLE		
Distance from Coast Banding	Switchgear	Transformers	Poles (Wood)	Poles (Steel)	Poles (Concrete)	Towers (Structure)	Towers (Fittings)	Towers (Conductor)
≤ 1km	1.35	1.35	1	1.5	1.25	1.8	2	2
> 1km and ≤ 5km	1.1	1.1	1	1.2	1.1	1.45	1.5	1.5
> 5km and ≤ 10km	1.05	1.05	1	1.1	1.05	1.2	1.2	1.2
> 10km and ≤ 20km	1	1	1	1	1	1	1	1
>20km	0.9	0.9	1	1	1	0.85	1	1
Default	1	1	1	1	1	1	1	1

Altitude from Sea Level Banding	Switchgear	Transformers	Poles (Wood)	Poles (Steel)	Poles (Concrete)	Towers (Structure)	Towers (Fittings)	Towers (Conductor)
≤ 100m	0.9	0.9	1	1	1	0.9	0.95	0.95
> 100m and ≤ 200m	1	1	1	1	1	1	1	1
> 200m and ≤ 300m	1.05	1.05	1	1	1	1.15	1.05	1.05
> 300m	1.1	1.1	1	1	1	1.3	1.15	1.15
Default	1	1	1	1	1	1	1	1

TABLE 23: ALTITUDE FACTOR LOOKUP TABLE

TABLE 24: CORROSION CATEGORY FACTOR LOOKUP TABLE

Corrosion Category Index	Switchgear	Transformers	Poles (Wood)	Poles (Steel)	Poles (Concrete)	Towers (Structure)	Towers (Fittings)	Towers (Conductor)
1	0.9	0.9	1	0.9	0.9	0.75	0.95	0.95
2	0.95	0.95	1	0.95	0.95	0.9	0.95	0.95
3	1	1	1	1	1	1	1	1
4	1.1	1.1	1	1.15	1.05	1.3	1.05	1.05
5	1.25	1.25	1	1.35	1.1	1.6	1.2	1.2
Default	1	1	1	1	1	1	1	1

TABLE 25: INCREMENT CONSTANTS

Increment Constant	Switchgear	Transformers	Submarine Cables	Poles (Wood)	Poles (Steel)	Poles (Concrete)	Towers (Structure)	Towers (Fittings)	Towers (Conductor)
INC	0.05	0.05	0.05	0	0	0	0	0	0

TABLE 26: DEFAULT ENVIRONMENT (INDOOR/OUTDOOR)

Asset Register Category	Default 'environment' to be assumed when deriving Location Factor
LV Poles	Outdoor
LV Circuit Breaker	Indoor
LV Pillar (ID)	Indoor
LV Pillar (OD at Substation)	Outdoor
LV Pillar (OD not at a Substation)	Outdoor
LV Board (WM)	Indoor
LV UGB	n/a
LV Board (X-type Network) (WM)	Indoor
6.6/11kV Poles	Outdoor
20kV Poles	Outdoor
HV Sub Cable	n/a
6.6/11kV CB (GM) Primary	Indoor
6.6/11kV CB (GM) Secondary	Indoor
6.6/11kV Switch (GM)	Indoor
6.6/11kV RMU	Indoor
6.6/11kV X-type RMU	Indoor
20kV CB (GM) Primary	Indoor
20kV CB (GM) Secondary	Indoor
20kV Switch (GM)	Indoor
20kV RMU	Indoor
6.6/11kV Transformer (GM)	Indoor
20kV Transformer (GM)	Indoor
33kV Pole	Outdoor
66kV Pole	Outdoor
33kV OHL (Tower Line) Conductor	Outdoor
33kV Tower	Outdoor

Asset Register Category	Default 'environment' to be assumed when deriving Location Factor
33kV Fittings	Outdoor
66kV OHL (Tower Line) Conductor	Outdoor
66kV Tower	Outdoor
66kV Fittings	Outdoor
33kV UG Cable (Non Pressurised)	n/a
33kV UG Cable (Oil)	n/a
33kV UG Cable (Gas)	n/a
66kV UG Cable (Non Pressurised)	n/a
66kV UG Cable (Oil)	n/a
66kV UG Cable (Gas)	n/a
EHV Sub Cable	n/a
33kV CB (Air Insulated Busbars)(ID) (GM)	Indoor
33kV CB (Air Insulated Busbars)(OD) (GM)	Outdoor
33kV CB (Gas Insulated Busbars)(ID)(GM)	Indoor
33kV CB (Gas Insulated Busbars)(OD)(GM)	Outdoor
33kV Switch (GM)	Indoor
33kV RMU	Indoor
66kV CB (Air Insulated Busbars)(ID) (GM)	Indoor
66kV CB (Air Insulated Busbars)(OD) (GM)	Outdoor
66kV CB (Gas Insulated Busbars)(ID)(GM)	Indoor
66kV CB (Gas Insulated Busbars)(OD)(GM)	Outdoor
33kV Transformer (GM)	Outdoor
66kV Transformer (GM)	Outdoor
132kV OHL (Tower Line) Conductor	Outdoor
132kV Tower	Outdoor
132kV Fittings	Outdoor
132kV UG Cable (Non Pressurised)	n/a
132kV UG Cable (Oil)	n/a
132kV UG Cable (Gas)	n/a
132kV Sub Cable	n/a
132kV CB (Air Insulated Busbars)(ID) (GM)	Indoor
132kV CB (Air Insulated Busbars)(OD) (GM)	Outdoor
132kV CB (Gas Insulated Busbars)(ID) (GM)	Indoor
132kV CB (Gas Insulated Busbars)(OD) (GM)	Outdoor
132kV Transformer (GM)	Outdoor

B.3.2 Submarine Cables

TABLE 27: SUBMARINE CABLE TOPOGRAPHY FACTOR

Topography	Score (Sea)	Score (Land locked)
Low Detrimental Topography	1.25	0.5
Medium Detrimental Topography	1.5	0.6
High Detrimental Topography	2.25	0.9
Very High Detrimental Topography	3	1.2
Default	1.25	0.5

TABLE 28: SUBMARINE CABLE SITUATION FACTOR

Situation	Score
Laid on bed	1
Covered	0.9
Buried	0.8
Default	1

TABLE 29: SUBMARINE CABLE WIND/WAVE FACTOR

Rating	Description	Score
1	Sheltered sea loch, Wind <200 W/m2	1
2	Wave <15kW/m, Wind 200-800 W/m2	1.2
3	Wave >15kW/m, Wind > 800 W/m2	1.4
	Default	1

Intensity	Scoring (Sea)	Scoring (Landlocked)			
Low	1.1	1			
Moderate	1.25	1.15			
High	1.5	1.4			
Default	1.1	1			

TABLE 30: COMBINED WAVE & CURRENT ENERGY FACTOR

B.4 Duty Factor

TABLE 31: DUTY FACTOR LOOKUP TABLES - CABLES

Duty Factor 1 (DF1)

Maximum % Utilisation under normal operating conditions	Duty Factor (HV)	Duty Factor (EHV & 132kV)
≤ 50%	0.8	1
> 50% and ≤ 70%	0.9	1.1
> 70% and ≤ 100%	1	1.3
> 100%	1.8	2
Default	1	1

Duty Factor 2 (DF2)

Operating Voltage / Design Voltage	Duty Factor
≤ 40%	0.7
> 40% and ≤ 55%	0.8
> 55% and ≤ 70%	0.9
> 70%	1
Default	1

TABLE 32: DUTY FACTOR LOOKUP TABLE - SWITCHGEAR

Number of operations	Duty Factor
Normal/Low	1
High (e.g.: Auto-reclosers)	1.2
Default	1

TABLE 33: DUTY FACTOR LOOKUP TABLE - DISTRIBUTION TRANSFORMERS

Max % Utilisation under normal operating conditions	Duty Factor
≤ 50%	0.9
> 50% and ≤ 70%	0.95
> 70% and ≤ 100%	1
>100%	1.4
Default	1

Max % Utilisation under normal operating conditions	Duty Factor
≤ 50%	1
> 50% and ≤ 70%	1.05
> 70% and ≤ 100%	1.1
>100%	1.4
Default	1

TABLE 34: DUTY FACTOR LOOKUP TABLES - GRID & PRIMARY TRANSFORMERS Transformer

Tapchanger

Average Number of Daily Taps	Duty Factor
≤7	0.9
> 7 and ≤ 14	1
> 14 and ≤ 28	1.2
> 28	1.3
Default	1

The above transformer and Tapchanger duty factors will not be combined into a single factor, as separate Health Scores will be calculated for each element.

B.5 Observed Condition Factors

B.5.1 Overview

The following calibration tables shall be used to determine the value of each Observed Condition Input for individual assets.

The Observed Condition Inputs consist of three elements:-

- i) A Condition Input Factor, which is used in the derivation of the Observed Condition Factor;
- ii) a Condition Input Cap, which specifies a Health Score value that is used in the derivation of the Observed Condition Cap;
- iii) a Condition Input Collar, which specifies a Health Score value that is used in the derivation of the Observed Condition Collar.

The use of Observed Condition Inputs to create the Observed Condition Modifier is described in Section 6.9.

DNOs shall map their own observed condition data to the criteria shown in these calibration tables, in order to determine the appropriate values for each of the Observed Condition Inputs. Where no data is available the default values for the Observed Condition Inputs shall be applied.

B.5.2 LV UGB

TABLE 33. OBSERVED CONDITION INFOT - EV OGD. STELE COVER & FIT CONDITION					
Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar	
No deterioration	No observed deterioration	0.9	10	0.5	
Superficial/minor deterioration	The asset component is fit for continued service. There is little deterioration	1	10	0.5	
Some Deterioration	e.g. Minor corrosion	1.2	10	0.5	
Substantial Deterioration	e.g. Major corrosion	1.4	10	0.5	
Default	No data available	1	10	0.5	

TABLE 35: OBSERVED CONDITION INPUT - LV UGB: STEEL COVER & PIT CONDITION

TABLE 36: OBSERVED CONDITION INPUT - LV UGB: WATER / MOISTURE

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
None	Dry	1	10	0.5
Present in Pit	Evidence of moisture observed in pit	1.1	10	0.5
Present in Bell Housing	Evidence of moisture observed in bell housing	1.3	10	0.5
Default	No data available	1	10	0.5

TABLE 37: OBSERVED CONDITION INPUT - LV UGB: BELL CONDITION

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
No Deterioration	No observed deterioration	0.9	10	0.5
Some Deterioration	e.g. Minor corrosion	1.2	10	0.5
Substantial Deterioration	e.g. Major corrosion	1.4	10	0.5
Default	No data available	1	10	0.5

TABLE 38: OBSERVED CONDITION INPUT - LV UGB: INSULATION CONDITION

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
No Deterioration	No observed deterioration	0.9	10	0.5
Some Deterioration	Chips and advanced aging	1	10	0.5
Substantial Deterioration	Evidence of flashover or damage, or degradation of insulation material	1.3	10	8
Default	No data available	1	10	0.5

TABLE 39: OBSERVED CONDITION INPUT - LV UGB: SIGNS OF HEATING

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
No Deterioration	No observed deterioration	0.9	10	0.5
Some Deterioration	Observed running higher than ambient	1	10	0.5
Substantial Deterioration	Evidence of overheating	1.5	10	5.5
Default	No data available	1	10	0.5

TABLE 40: OBSERVED CONDITION INPUT - LV UGB: PHASE BARRIERS

Condition Criteria: Phase barriers Present?	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Yes	Phase Barriers Present	1	10	0.5
Missing	Phase Barriers Not Present (in whole or part)	1.3	10	0.5
Default	No data available	1	10	0.5

B.5.3 LV Circuit Breaker

	DILANEN. EXTEN			
Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
No deterioration:	Visual assessment gives a positive indication of asset condition. There are no obvious signs of any deterioration such as corrosion, stains or markings.	0.9	10	0.5
Superficial/minor deterioration	There is little deterioration. The asset (or a sub component) may exhibit signs of ageing, surface level scratches, moss or lichen that can be brushed off. This has no material impact on the probability of failure for the asset.	1	10	0.5
Some Deterioration	There is evidence of some degradation such as surface corrosion or minor compound leaks. The level of degradation may affect the operation of the asset if left untended (e.g. large patches of rust on the metalwork, door- hinges heavily rusted).	1.3	10	0.5
Substantial Deterioration	The switchgear is corroded to the point that it can no longer hold its oil / SF6 insulation, one or more metalwork supports are rusted through, or the switchgear housing is damaged beyond economical repair.	1.6	10	0.5
Default	No data available	1	10	0.5

TABLE 41: OBSERVED CONDITION INPUT - LV CIRCUIT BREAKER: EXTERNAL CONDITION

B.5.4 LV Board (WM)

TABLE 42: OBSERVED CONDITION INPUT - LV BOARD (WM): SWITCHGEAR EXTERNAL CONDITION

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
No deterioration:	Visual assessment gives a positive indication of asset condition. There are no obvious signs of any deterioration such as corrosion, stains or markings.	0.9	10	0.5
Superficial/minor deterioration	There is little deterioration. The asset (or a sub component) may exhibit signs of ageing, surface level scratches, moss or lichen that can be brushed off. This has no material impact on the probability of failure for the asset.	1	10	0.5
Some Deterioration	There is evidence of some degradation such as surface corrosion or minor compound leaks. The level of degradation may affect the operation of the asset if left untended (e.g. large patches of rust on the metalwork, door- hinges heavily rusted).	1.2	10	0.5
Substantial Deterioration	The switchgear is corroded to the point that one or more metalwork supports are rusted through, or the switchgear housing is damaged beyond economical repair.	1.4	10	5.5
Default	No data available	1	10	0.5

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
No Deterioration	No leakage	1	10	0.5
Superficial/minor deterioration	Evidence of slight compound leak	1.1	10	0.5
Substantial deterioration	Significant compound leak or multiple compound leaks on the same board.	1.3	10	5.5
Default	No data available	1	10	0.5

TABLE 43: OBSERVED CONDITION INPUT - LV BOARD (WM): COMPOUND LEAKS

TABLE 44: OBSERVED CONDITION INPUT - LV BOARD (WM): SWITCHGEAR INTERNAL CONDITION & OPERATION

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
No Deterioration	No observed deterioration	0.9	10	0.5
Superficial/minor deterioration	The asset component is fit for continued service. There is little deterioration	1	10	0.5
Some deterioration	Minor corrosion (e.g. light rust) or evidence of a minor mechanism defect.	1.2	10	3.0
Substantial deterioration	Evidence of significant corrosion, missing, defective or damaged internal insulation (e.g. evidence of severe discharge activity or breakdown of insulation) or a severe mechanism defect that affects the operation of the asset.	1.4	10	8.0
Default	No data available	1	10	0.5

TABLE 45: OBSERVED CONDITION INPUT - LV BOARD (WM): INSULATION CONDITION

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Satisfactory	No observed deterioration	0.9	10	0.5
Some Deterioration	The asset component is fit for continued service. There is little deterioration	1	10	0.5
Substantial Deterioration	Degradation of insulation material	1.3	10	0.5
Default	No data available	1	10	0.5

TABLE 46: OBSERVED CONDITION INPUT - LV BOARD (WM): SIGNS OF HEATING

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
No Deterioration	No obvious degradation	1	10	0.5
Minor Deterioration	Observed running higher than ambient	1.2	10	0.5
Major Deterioration	Evidence of overheating	1.5	10	5.5
Default	No data available	1	10	0.5

TABLE 47: OBSERVED CONDITION INPUT - LV BOARD (WM): PHASE BARRIERS

Condition Criteria: Phase barriers Present?	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Yes	Phase Barriers Present	1	10	0.5
Missing	Phase Barriers Not Present (in whole or part)	1.3	10	0.5
Default	No data available	1	10	0.5

B.5.5 LV Pillars

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
No deterioration:	Visual assessment gives a positive indication of asset condition. There are no obvious signs of any deterioration such as corrosion, stains or markings.	0.9	10	0.5
Superficial/minor deterioration	There is little deterioration The asset (or a sub component) may exhibit signs of ageing, surface level scratches, moss or lichen that can be brushed off. This has no material impact on the probability of failure for the asset.	1	10	0.5
Some Deterioration	There is evidence of some degradation such as surface corrosion or minor compound leaks. The level of degradation may affect the operation of the asset if left untended (e.g. large patches of rust on the metalwork, door- hinges heavily rusted).	1.2	10	0.5
Substantial Deterioration	The switchgear is corroded to the point that one or more metalwork supports are rusted through, or the switchgear housing is damaged beyond economical repair.	1.4	10	5.5
Default	No data available	1	10	0.5

TABLE 48: OBSERVED CONDITION INPUT - LV PILLARS: SWITCHGEAR EXTERNAL CONDITION

TABLE 49: OBSERVED CONDITION INPUT - LV PILLARS: COMPOUND LEAKS

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
No Deterioration	No leakage	1	10	0.5
Superficial/minor deterioration	Evidence of slight compound leak	1.1	10	0.5
Substantial deterioration	Significant compound leak or multiple compound leaks on the same pillar.	1.3	10	5.5
Default	No data available	1	10	0.5

TABLE 50: OBSERVED CONDITION INPUT - LV PILLARS: SWITCHGEAR INTERNAL CONDITION & OPERATION

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
No Deterioration	No observed deterioration	0.9	10	0.5
Superficial/minor deterioration	The asset component is fit for continued service. There is little deterioration	1	10	0.5
Some Deterioration	Minor corrosion (e.g. light rust) or evidence of a minor mechanism defect.	1.2	10	3.0
Substantial Deterioration	Evidence of significant corrosion, missing, defective or damaged internal insulation (e.g. evidence of severe discharge activity or breakdown of insulation) or a severe mechanism defect that affects the operation of the asset.	1.4	10	8.0
Default	No data available	1	10	0.5

TABLE 51: OBSERVED CONDITION INPUT - LV PILLARS: INSULATION CONDITION

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Satisfactory	No observed deterioration	0.9	10	0.5
Some Deterioration	The asset component is fit for continued service. There is little deterioration	1	10	0.5
Substantial Deterioration	Degradation of insulation material	1.3	10	0.5
Default	No data available	1	10	0.5

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
No Deterioration	No obvious degradation	1	10	0.5
Minor Deterioration	Observed running higher than ambient	1.2	10	0.5
Major Deterioration	Evidence of overheating	1.5	10	5.5
Default	No data available	1	10	0.5

TABLE 52: OBSERVED CONDITION INPUT - LV PILLARS: SIGNS OF HEATING

TABLE 53: OBSERVED CONDITION INPUT - LV PILLARS: PHASE BARRIERS

Condition Criteria: Phase barriers Present?	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Yes	Phase Barriers Present	1	10	0.5
Missing	Phase Barriers Not Present (in whole or part)	1.3	10	0.5
Default	No data available	1	10	0.5

B.5.6 HV Switchgear (GM) - Distribution

TABLE 54: OBSERVED CONDITION INPUT - HV SWITCHGEAR (GM) - DISTRIBUTION: SWITCHGEAR EXTERNAL CONDITION

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
No deterioration:	Visual assessment gives a positive indication of asset condition. There are no obvious signs of any deterioration such as corrosion, stains or markings.	0.9	10	0.5
Superficial/minor deterioration	There is little deterioration. The asset (or a sub component) may exhibit signs of ageing, surface level scratches, moss or lichen that can be brushed off. This has no material impact on the probability of failure for the asset.	1	10	0.5
Some Deterioration	There is evidence of some degradation such as surface corrosion or minor compound leaks. The level of degradation may affect the operation of the asset if left untended (e.g. large patches of rust on the metalwork, door- hinges heavily rusted).	1.2	10	3.0
Substantial Deterioration	The switchgear is corroded to the point that it can no longer hold its oil / SF6 insulation, one or more metalwork supports are rusted through, or the switchgear housing is damaged beyond economical repair.	1.4	10	8.0
Default	No data available	1	10	0.5

TABLE 55: OBSERVE	TABLE 55: OBSERVED CONDITION INPUT - HV SWITCHGEAR (GM) - DISTRIBUTION: OIL LEAKS / GAS PRESSURE				
Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar	
No deterioration	Oil: No Oil appears to be actively leaking from the component in question. This may include assets with minor stains or marks Gas: Gas pressure reading is within the expected limit	0.9	10	0.5	
Superficial/minor deterioration	Oil: There is evidence of a small leak, but this is limited to staining of the asset or the ground around the asset AND oil still visible in the sight glass where fitted. Repairs / intervention to the asset (or a sub component) is not expected to be required between now and the next planned maintenance Gas: Not used	1	10	0.5	
Some Deterioration	Oil: There is evidence of a small active oil leak from the switchgear e.g. droplets or weeping beneath the fixed portion. Minor maintenance or refurbishment activities (as a minimum) are required to address the identified issue(s) Gas: Gas pressure outside of acceptable range	1.1	10	3.0	
Substantial Deterioration	Oil: There is evidence of a significant oil leak from the switchgear e.g. pool of oil under/around the equipment, the switchgear may be draining or completely drained of oil and / or compound. Gas: Severe unrepairable leak or equipment requiring repeated top ups.	1.3	10	8.0	
Default	No data available	1	10	0.5	

TABLE 55: OBSERVED CONDITION INPUT - HV SWITCHGEAR (GM) - DISTRIBUTION: OIL LEAKS / GAS PRESSURE

TABLE 56: OBSERVED CONDITION INPUT - HV SWITCHGEAR (GM) - DISTRIBUTION: THERMOGRAPHIC ASSESSMENT

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Ambient or Below	At or below ambient temperature	0.9	10	0.5
Above Ambient	Above ambient temperature	1	10	0.5
Substantially Above Ambient	Operating above the manufacturers recommended maximum temperature	1.1	10	0.5
Default	No data available	1	10	0.5

TABLE 57: OBSERVED CONDITION INPUT - HV SWITCHGEAR (GM) - DISTRIBUTION: SWITCHGEAR INTERNAL CONDITION & OPERATION

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
No deterioration	No observed deterioration	0.9	10	0.5
Superficial/minor deterioration	The asset component is fit for continued service. There is little deterioration	1	10	0.5
Some Deterioration	Minor corrosion (e.g. light rust) or evidence of a minor mechanism defect.	1.2	10	3.0
Substantial Deterioration	Evidence of significant corrosion, missing, defective or damaged internal insulation (e.g. evidence of severe discharge activity or breakdown of insulation) or a severe mechanism defect that affects the operation of the asset.	1.4	10	8.0
Default	No data available	1	10	0.5

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Better than Expected	Air conditioned	0.9	10	0.5
As Expected	This is an environment which is typified as dry and has a degree of background heating or dehumidification which maintains this year round.	1	10	0.5
Deteriorated Environment	Heating or dehumidification faulty; room temperature is hotter than recommended by environmental policy; condensation evident in switch room etc.	1.3	10	0.5
Severely Deteriorated Environment	The substation is showing major signs of dampness such as definite water marks around the building, significant amount of flaking paint and/or mould growth. No environmental controls (such as heating or dehumidification) are installed, or the installed environmental controls are not functioning adequately; room temperature is excessively hot; roof or structure permits water ingress; water stands in trenches or free water is observed in the switch room.	1.5	10	0.5
Default	No data available	1	10	0.5

TABLE 58: OBSERVED CONDITION INPUT - HV SWITCHGEAR (GM) - DISTRIBUTION: INDOOR ENVIRONMENT

TABLE 59: OBSERVED CONDITION INPUT - HV SWITCHGEAR (GM) - DISTRIBUTION: CABLE BOXES CONDITION

	· · · · · · · · · · · · · · · · · · ·			
Condition Criteria: Observed	Description	Condition Input	Condition	Condition
Condition	Description	Factor	Input Cap	Input Collar
No Deterioration*	There are no signs of any deterioration	1	10	0.5
	such as corrosion, stains, markings,			
	compound leaks, discharge etc.			
	The cable box may exhibit minor	1	10	0.5
Superficial / minor	exterior stains or marks (e.g. surface			
deterioration*	level scratches, moss or lichen that can			
	be brushed off), but no damage or			
	corrosion should be evident. No			
	evidence of compound leaks,			
	discharge, signs of heating, or			
	deterioration of insulation.			
Some Deterioration	Minor corrosion (e.g. surface corrosion	1.1	10	0.5
	spots) or deterioration (e.g. minor			
	breakthrough of paintwork but no loss			
Substantial Deterioration	of galvanising).	1.3	10	0.5
Substantial Detenoration	Evidence of significant corrosion and perforation (e.g. holes). Severe	1.3	10	0.5
	breakthrough of paintwork with some			
	loss of galvanising.			
	Major compound leaks.			
	Evidence of discharge, signs of			
	heating, deterioration/ damage of			
	insulation.			
Default	No data available	1	10	0.5

* - note: as both the 'No Deterioration' and 'Superficial/minor deterioration' Condition Criteria for this Condition Input are treated in the same way by the Methodology, the categorisations for these two Condition Criteria may be combined in individual implementations of the Methodology.

Condition Criteria: Condition Input Condition Condition Description Input Collar **Observed Condition** Factor Input Cap Visual assessment gives a positive indication of asset condition. There are No deterioration: 0.9 10 0.5 no obvious signs of any deterioration such as corrosion, stains or markings. There is little deterioration. The asset (or a sub component) may exhibit signs of ageing, surface level scratches, moss or Superficial/minor 1 10 0.5 lichen that can be brushed off. This has deterioration no material impact on the probability of failure for the asset. There is evidence of some degradation such as surface corrosion or minor compound leaks. The level of degradation may affect the operation of Some Deterioration 1.2 10 3.0 the asset if left untended (e.g. large patches of rust on the metalwork, doorhinges heavily rusted). The switchgear is corroded to the point that it can no longer hold its oil / SF6 insulation, one or more metalwork Substantial Deterioration 1.4 10 8.0 supports are rusted through, or the switchgear housing is damaged beyond economical repair. Default No data available 1 10 0.5

B.5.7 HV Switchgear (GM) - Primary

TABLE 60: OBSERVED CONDITION INPUT - HV SWITCHGEAR (GM) - PRIMARY: SWITCHGEAR EXTERNAL CONDITION

TABLE 61: OBSERVED CONDITION INPUT - HV SWITCHGEAR (GM) - PRIMARY: OIL LEAKS / GAS PRESSURE				
Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
No deterioration	Oil: No Oil appears to be actively leaking from the component in question. This may include assets with minor stains or marks Gas: Gas pressure reading is within the expected limit	0.9	10	0.5
Superficial/minor deterioration	Oil: There is evidence of a small leak, but this is limited to staining of the asset or the ground around the asset AND oil still visible in the sight glass where fitted. Repairs / intervention to the asset (or a sub component) is not expected to be required between now and the next planned maintenance Gas: Not used	1	10	0.5
Some Deterioration	Oil: There is evidence of a small active oil leak from the switchgear e.g. droplets or weeping beneath the fixed portion. Minor maintenance or refurbishment activities (as a minimum) are required to address the identified issue(s) Gas: Gas pressure outside of acceptable range	1.1	10	3.0
Substantial Deterioration	Oil: There is evidence of a significant oil leak from the switchgear e.g. pool of oil under/around the equipment, the switchgear may be draining or completely drained of oil and / or compound. Gas: Severe unrepairable leak or equipment requiring repeated top ups.	1.3	10	8.0
Default	No data available	1	10	0.5

TABLE 62: OBSERVED CONDITION INPUT - HV SWITCHGEAR (GM) - PRIMARY: THERMOGRAPHIC ASSESSMENT					
Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar	
Ambient or Below	At or below ambient temperature	0.9	10	0.5	
Above ambient	Above ambient temperature	1	10	0.5	
Substantially above ambient	Operating above the manufacturers recommended maximum temperature	1.1	10	0.5	
Default	No data available	1	10	0.5	

TABLE 63: OBSERVED CONDITION INPUT - HV SWITCHGEAR (GM) - PRIMARY: SWITCHGEAR INTERNAL CONDITION & OPERATION

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
No deterioration	No observed deterioration	0.9	10	0.5
Superficial/minor deterioration	The asset component is fit for continued service. There is little deterioration	1	10	0.5
Some Deterioration	Minor corrosion (e.g. light rust) or evidence of a minor mechanism defect.	1.2	10	3.0
Substantial Deterioration	Evidence of significant corrosion, missing, defective or damaged internal insulation (e.g. evidence of severe discharge activity or breakdown of insulation) or a severe mechanism defect that affects the operation of the asset.	1.4	10	8.0
Default	No data available	1	10	0.5

TABLE 64: OBSERVED CONDITION INPUT - HV SWITCHGEAR (GM) - PRIMARY: INDOOR ENVIRONMENT

Condition Criteria: Observed Condition	Description	Condition Input	Condition	Condition
Better than expected	Air conditioned	Factor 0.9	Input Cap 10	0.5
As Expected	This is an environment which is typified as dry and has a degree of background heating or dehumidification which maintains this year round.	1	10	0.5
Deteriorated Environment	Heating or dehumidification faulty; room temperature is hotter than recommended by environmental policy; condensation evident in switch room etc.	1.3	10	0.5
Severely Deteriorated Environment	The substation is showing major signs of dampness such as definite water marks around the building, significant amount of flaking paint and/or mould growth. No environmental controls (such as heating or dehumidification) are installed, or the installed environmental controls are not functioning adequately; room temperature is excessively hot; roof or structure permits water ingress; water stands in trenches or free water is observed in the switch room.	1.5	10	0.5
Default	No data available	1	10	0.5

TABLE 65: OBSERVED CONDITION INPUT - HV SWITCHGEAR (GM) - PRIMARY: CABLE BOXES CONDITION

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
No Deterioration*	There are no signs of any deterioration such as corrosion, stains, markings, compound leaks, discharge etc.	1	10	0.5
Superficial / minor deterioration*	The cable box may exhibit minor exterior stains or marks (e.g. surface level scratches, moss or lichen that can be brushed off), but no damage or corrosion should be evident. No evidence of compound leaks, discharge, signs of heating, or deterioration of insulation.	1	10	0.5
Some Deterioration	Minor corrosion (e.g. surface corrosion spots) or deterioration (e.g. minor breakthrough of paintwork but no loss of galvanising).	1.1	10	0.5
Substantial Deterioration	Evidence of significant corrosion and perforation (e.g. holes). Severe breakthrough of paintwork with some loss of galvanising. Major compound leaks.	1.3	10	0.5

DNO Common Network Asset Indices Methodology

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
	Evidence of discharge, signs of heating, deterioration/ damage of insulation.			
Default	No data available	1	10	0.5

* - note: as both the 'No Deterioration' and 'Superficial/minor deterioration' Condition Criteria for this Condition Input are treated in the same way by the Methodology, the categorisations for these two Condition Criteria may be combined in individual implementations of the Methodology.

B.5.8 EHV Switchgear (GM)

TABLE 66: OBSERVED CONDITION INPUT - EHV SWITCHGEAR (GM): SWITCHGEAR EXTERNAL CONDITION

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
No deterioration:	Visual assessment gives a positive indication of asset condition. There are no obvious signs of any deterioration such as corrosion, stains or markings.	0.9	10	0.5
Superficial/minor deterioration	There is little deterioration. The asset (or a sub component) may exhibit signs of ageing, surface level scratches, moss or lichen that can be brushed off. This has no material impact on the probability of failure for the asset.	1	10	0.5
Some Deterioration	There is evidence of some degradation such as surface corrosion or minor compound leaks. The level of degradation may affect the operation of the asset if left untended (e.g. large patches of rust on the metalwork, door- hinges heavily rusted).	1.2	10	3.0
Substantial Deterioration	The switchgear is corroded to the point that it can no longer hold its oil / SF6 insulation, one or more metalwork supports are rusted through, or the switchgear housing is damaged beyond economical repair.	1.4	10	8.0
Default	No data available	1	10	0.5

TABLE 67: OBSERVED CONDITION INPUT - EHV SWITCHGEAR (GM): OIL LEAKS / GAS PRESSURE

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
No deterioration	Oil: No Oil appears to be actively leaking from the component in question. This may include assets with minor stains or marks Gas: Gas pressure reading is within the expected limit	0.9	10	0.5
Superficial/minor deterioration	Oil: There is evidence of a small leak, but this is limited to staining of the asset or the ground around the asset AND oil still visible in the sight glass where fitted. Repairs / intervention to the asset (or a sub component) is not expected to be required between now and the next planned maintenance Gas: Not used	1	10	0.5
Some Deterioration	Oil: There is evidence of a small active oil leak from the switchgear e.g. droplets or weeping beneath the fixed portion. Minor maintenance or refurbishment activities (as a minimum) are required to address the identified issue(s) Gas: Gas pressure outside of acceptable range	1.1	10	3.0

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Substantial Deterioration	Oil: There is evidence of a significant oil leak from the switchgear e.g. pool of oil under/around the equipment, the switchgear may be draining or completely drained of oil and / or compound. Gas: Severe unrepairable leak or equipment requiring repeated top ups.	1.3	10	8.0
Default	No data available	1	10	0.5

TABLE 68: OBSERVED CONDITION INPUT - EHV SWITCHGEAR (GM): THERMOGRAPHIC ASSESSMENT

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Ambient or Below	At or below ambient temperature	0.9	10	0.5
Above Ambient	Above ambient temperature	1	10	0.5
Substantially Above Ambient	Operating above the manufacturers recommended maximum temperature	1.1	10	0.5
Default	No data available	1	10	0.5

TABLE 69: OBSERVED CONDITION INPUT - EHV SWITCHGEAR (GM): SWITCHGEAR INTERNAL CONDITION & OPERATION

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
No deterioration	No observed deterioration	0.9	10	0.5
Superficial/minor deterioration	The asset component is fit for continued service. There is little deterioration	1	10	0.5
Some Deterioration	Minor corrosion (e.g. light rust) or evidence of a minor mechanism defect.	1.2	10	3.0
Substantial Deterioration	Evidence of significant corrosion, missing, defective or damaged internal insulation (e.g. evidence of severe discharge activity or breakdown of insulation) or a severe mechanism defect that affects the operation of the asset.	1.4	10	8.0
Default	No data available	1	10	0.5

TABLE 70: OBSERVED CONDITION INPUT - EHV SWITCHGEAR (GM): INDOOR ENVIRONMENT

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Better than Expected	Air conditioned	0.9	10	0.5
As Expected	This is an environment which is typified as dry and has a degree of background heating or dehumidification which maintains this year round.	1	10	0.5
Deteriorated Environment	Heating or dehumidification faulty; room temperature is hotter than recommended by environmental policy; condensation evident in switch room etc.	1.3	10	0.5
Severely Deteriorated Environment	The substation is showing major signs of dampness such as definite water marks around the building, significant amount of flaking paint and/or mould growth. No environmental controls (such as heating or dehumidification) are installed, or the installed environmental controls are not functioning adequately; room temperature is excessively hot; roof or structure permits water	1.5	10	0.5

DNO Common Network Asset Indices Methodology

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
	ingress; water stands in trenches or free water is observed in the switch room.			
Default	No data available	1	10	0.5

TABLE 71: OBSERVED CONDITION INPUT - EHV SWITCHGEAR (GM): SUPPORT STRUCTURES

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
No Deterioration	Visual assessment gives a positive indication of asset condition. There are no obvious signs of any deterioration such as corrosion or cracks.	0.9	10	0.5
Superficial/minor deterioration	Concrete Structures: Surface Deterioration Metal Structures: Minor localised surface corrosion	1	10	0.5
Some Deterioration	Concrete Structures: Evidence of previous concrete repairs, repairs have begun to fail in places. This may include minor cracks and loss of section. Metal structures: some surface level corrosion.	1.3	10	0.5
Substantial Deterioration	The support structure is corroded or damaged to the point that it can no longer fulfil its mechanical load carrying capacity. This may include: Concrete structures: extensive cracking, areas of concrete spalled exposing reinforcement causing corrosion. Metal structures: evidence of widespread or significant corrosion (e.g. perforation, holes in steelwork) or major physical damage.	1.5	10	5.5
Default	No data available	1	10	0.5

TABLE 72: OBSERVED CONDTION INPUT - EHV SWITCHGEAR (GM): CABLE BOXES CONDITION

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
No Deterioration*	There are no signs of any deterioration such as corrosion, stains, markings, compound leaks, discharge etc.	1	10	0.5
Superficial / minor deterioration*	The cable box may exhibit minor exterior stains or marks (e.g. surface level scratches, moss or lichen that can be brushed off), but no damage or corrosion should be evident. No evidence of compound leaks, discharge, signs of heating, or deterioration of insulation.	1	10	0.5
Some Deterioration	Minor corrosion (e.g. surface corrosion spots) or deterioration (e.g. minor breakthrough of paintwork but no loss of galvanising).	1.1	10	0.5
Substantial Deterioration	Evidence of significant corrosion and perforation (e.g. holes). Severe breakthrough of paintwork with some loss of galvanising. Major compound leaks. Evidence of discharge, signs of heating, deterioration/ damage of insulation.	1.3	10	0.5
Default	No data available	1	10	0.5

* - note: as both the 'No Deterioration' and 'Superficial/minor deterioration' Condition Criteria for this Condition Input are treated in the same way by the Methodology, the categorisations for these two Condition Criteria may be combined in individual implementations of the Methodology.

B.5.9 132kV Switchgear (GM)

	INDITION INPUT - 132KV SWITCHGEAR			
Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
No deterioration:	Visual assessment gives a positive indication of asset condition. There are no obvious signs of any deterioration such as corrosion, stains or markings.	0.9	10	0.5
Superficial/minor deterioration	There is little deterioration. The asset (or a sub component) may exhibit signs of ageing, surface level scratches, moss or lichen that can be brushed off. This has no material impact on the probability of failure for the asset.	1	10	0.5
Some Deterioration	There is evidence of some degradation such as surface corrosion or minor compound leaks. The level of degradation may affect the operation of the asset if left untended (e.g. large patches of rust on the metalwork, door- hinges heavily rusted).	1.2	10	3.0
Substantial Deterioration	The switchgear is corroded to the point that it can no longer hold its oil / SF6 insulation, one or more metalwork supports are rusted through, or the switchgear housing is damaged beyond economical repair.	1.4	10	8.0
Default	No data available	1	10	0.5

TABLE 73: OBSERVED CONDITION INPUT - 132KV SWITCHGEAR (GM): SWITCHGEAR EXTERNAL CONDITION

TABLE 74: OBSERVED CONDITION INPUT - 132KV SWITCHGEAR (GM): OIL LEAKS / GAS PRESSURE

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
No deterioration	Oil: No Oil appears to be actively leaking from the component in question. This may include assets with minor stains or marks Gas: Gas pressure reading is within the expected limit	0.9	10	0.5
Superficial/minor deterioration	Oil: There is evidence of a small leak, but this is limited to staining of the asset or the ground around the asset AND oil still visible in the sight glass where fitted. Repairs / intervention to the asset (or a sub component) is not expected to be required between now and the next planned maintenance Gas: Not used	1	10	0.5
Some Deterioration	Oil: There is evidence of a small active oil leak from the switchgear e.g. droplets or weeping beneath the fixed portion. Minor maintenance or refurbishment activities (as a minimum) are required to address the identified issue(s) Gas: Gas pressure outside of acceptable range	1.1	10	3.0
Substantial Deterioration	Oil: There is evidence of a significant oil leak from the switchgear e.g. pool of oil under/around the equipment, the switchgear may be draining or completely drained of oil and / or compound. Gas: Severe unrepairable leak or equipment requiring repeated top ups.	1.3	10	8.0
Default	No data available	1	10	0.5

TABLE 13: OBOLIVED CONDITION IN OT - 1521V OWITCHCEAK (OW): THENWOOKAI THE ACCECOMENT					
Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar	
Ambient or Below	At or below ambient temperature	0.9	10	0.5	
Above Ambient	Above ambient temperature	1	10	0.5	
Substantially Above Ambient	Operating above the manufacturers recommended maximum temperature	1.1	10	0.5	
Default	No data available	1	10	0.5	

TABLE 75: OBSERVED CONDITION INPUT - 132KV SWITCHGEAR (GM): THERMOGRAPHIC ASSESSMENT

TABLE 76: OBSERVED CONDITION INPUT - 132KV SWITCHGEAR (GM): SWITCHGEAR INTERNAL CONDITION & OPERATION

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
No deterioration	No observed deterioration	0.9	10	0.5
Superficial/minor deterioration	The asset component is fit for continued service. There is little deterioration	1	10	0.5
Some Deterioration	Minor corrosion (e.g. light rust) or evidence of a minor mechanism defect.	1.2	10	3.0
Substantial Deterioration	Evidence of significant corrosion, missing, defective or damaged internal insulation (e.g. evidence of severe discharge activity or breakdown of insulation) or a severe mechanism defect that affects the operation of the asset.	1.4	10	8.0
Default	No data available	1	10	0.5

TABLE 77: OBSERVED CONDITION INPUT - 132KV SWITCHGEAR (GM): INDOOR ENVIRONMENT

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Better than Expected	Air conditioned	0.9	10	0.5
As Expected	This is an environment which is typified as dry and has a degree of background heating or dehumidification which maintains this year round.	1	10	0.5
Deteriorated Environment	Heating or dehumidification faulty; room temperature is hotter than recommended by environmental policy; condensation evident in switch room etc.	1.3	10	0.5
Severely Deteriorated Environment	The substation is showing major signs of dampness such as definite water marks around the building, significant amount of flaking paint and/or mould growth. No environmental controls (such as heating or dehumidification) are installed, or the installed environmental controls are not functioning adequately; room temperature is excessively hot; roof or structure permits water ingress; water stands in trenches or free water is observed in the switch room.	1.5	10	0.5
Default	No data available	1	10	0.5

TABLE 78: OBSERVED CONDITION INPUT - 132KV SWITCHGEAR (GM): SUPPORT STRUCTURES

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
No Deterioration	Visual assessment gives a positive indication of asset condition. There are no obvious signs of any deterioration such as corrosion or cracks.	0.9	10	0.5
Superficial/minor deterioration	Concrete Structures: Surface Deterioration Metal Structures: Minor localised surface corrosion	1	10	0.5

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Some Deterioration	Concrete Structures: Evidence of previous concrete repairs, repairs have begun to fail in places. This may include minor cracks and loss of section. Metal structures: some surface level corrosion.	1.3	10	0.5
Substantial Deterioration	The support structure is corroded or damaged to the point that it can no longer fulfil its mechanical load carrying capacity. This may include: Concrete structures: extensive cracking, areas of concrete spalled exposing reinforcement causing corrosion. Metal structures: evidence of widespread or significant corrosion (e.g. perforation, holes in steelwork) or major physical damage.	1.5	10	5.5
Default	No data available	1	10	0.5

TABLE 79: OBSERVED CONDITION INPUT - 132KV SWITCHGEAR	(GM	· AIR SYSTEMS
TABLE 10. OBOERTED CONDITION IN OT TOERT OWNONOEAR		

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
No Deterioration	No observed deterioration	0.9	10	0.5
Superficial/minor deterioration	Minor surface corrosion observed on observable pipe work	1	10	0.5
Some Deterioration	Minor Air Losses - System runs excessively to maintain pressure	1.3	10	0.5
Substantial Deterioration	Major Air Losses - Loss of pressure pipe section observed. Air leaks can be found by inspection; Certification notes defects. Etc.	1.5	10	0.5
Default	No data available	1	10	0.5

TABLE 80: OBSERVED CONDITION INPUT - 132KV SWITCHGEAR (GM): CABLE BOXES CONDITION				
Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
No Deterioration*	There are no signs of any deterioration such as corrosion, stains, markings, compound leaks, discharge etc.	1	10	0.5
Superficial / minor deterioration*	The cable box may exhibit minor exterior stains or marks (e.g. surface level scratches, moss or lichen that can be brushed off), but no damage or corrosion should be evident. No evidence of compound leaks, discharge, signs of heating, or deterioration of insulation.	1	10	0.5
Some Deterioration	Minor corrosion (e.g. surface corrosion spots) or deterioration (e.g. minor breakthrough of paintwork but no loss of galvanising).	1.1	10	0.5
Substantial Deterioration	Evidence of significant corrosion and perforation (e.g. holes). Severe breakthrough of paintwork with some loss of galvanising. Major compound leaks. Evidence of discharge, signs of heating, deterioration/ damage of insulation.	1.3	10	0.5
Default	No data available	1	10	0.5

* - note: as both the 'No Deterioration' and 'Superficial/minor deterioration' Condition Criteria for this Condition Input are treated in the same way by the Methodology, the categorisations for these two Condition Criteria may be combined in individual implementations of the Methodology.

B.5.10 HV Transformer (GM)

TABLE 81: OBSERVED CONDITION INPUT - HV TRANSFORMER (GM): TRANSFORMER EXTERNAL CONDITION					
Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar	
No deterioration	Condition as new	0.9	10	0.5	
Superficial/minor deterioration	The transformer may exhibit signs of ageing or marks (e.g. surface level scratches, moss or lichen that can be brushed off). This has no material impact on the probability of failure for the asset.	1	10	0.5	
Slight deterioration	 Minor localised surface corrosion. There may be evidence of a small leak, but it does not present a significant impact to the overall probability of failure for the asset, for example: There is a small active leak from a sub component but this can be addressed through intervention of the sub component A small inactive leak which is limited to staining of the asset or the ground around the asset. 	1.1	10	0.5	
Some Deterioration	The asset shows a level of deterioration such as surface corrosion spots. The level of degradation may affect the operation of the asset if left untended (e.g. large patches of rust on the metalwork); and/or there is evidence of a small active oil leak (e.g. droplets or weeping).	1.25	10	3.0	
Substantial Deterioration	There is evidence of major corrosion or a significant active oil leak (e.g. pools of oil collecting on the ground or plinth).	1.4	10	8.0	
Default	No data available	1	10	0.5	

TABLE 81: OBSERVED CONDITION INPUT - HV TRANSFORMER (GM): TRANSFORMER EXTERNAL CONDITION

TABLE 82: OBSERVED CONDITION INPUT - HV TRANSFORMER (GM): CABLE BOXES CONDITION

Condition Criteria: Observed	Description	Condition Input	Condition	Condition
Condition	Description	Factor	Input Cap	Input Collar
No Deterioration*	There are no signs of any deterioration such as corrosion, stains, markings, compound leaks, discharge etc.	1	10	0.5
Superficial / minor deterioration*	The cable box may exhibit minor exterior stains or marks (e.g. surface level scratches, moss or lichen that can be brushed off), but no damage or corrosion should be evident. No evidence of compound leaks, discharge, signs of heating, or deterioration of insulation.	1	10	0.5
Some Deterioration	Minor corrosion (e.g. surface corrosion spots) or deterioration (e.g. minor breakthrough of paintwork but no loss of galvanising).	1.1	10	0.5
Substantial Deterioration	Evidence of significant corrosion and perforation (e.g. holes). Severe breakthrough of paintwork with some loss of galvanising. Major compound leaks. Evidence of discharge, signs of heating, deterioration/ damage of insulation.	1.3	10	0.5
Default	No data available	1	10	0.5

* - note: as both the 'No Deterioration' and 'Superficial/minor deterioration' Condition Criteria for this Condition Input are treated in the same way by the Methodology, the categorisations for these two Condition Criteria may be combined in individual implementations of the Methodology.

B.5.11 EHV Transformer (GM) (Main Transformer component)

TABLE 83: OBSERVED CONDITION INPUT - EHV TRANSFORMER (GM): MAIN TANK CONDITION					
Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar	
Superficial/minor deterioration	The transformer may exhibit signs of ageing or marks (e.g. surface level scratches, moss or lichen that can be brushed off). This has no material impact on the probability of failure for the asset. There may be evidence of a small leak, but it does not present a significant impact to the overall probability of failure for the asset, for example: - There is a small active leak from a sub component (e.g. a pressure relief device) but this can be addressed through intervention of the sub component. - The leak this is limited to staining of the asset.	1	10	0.5	
Some Deterioration	The asset shows a level of deterioration such as surface corrosion spots or minor oil leaks. The level of degradation may affect the operation of the asset if left untended (e.g. large patches of rust on the metalwork); and/or there is evidence of a small active oil leak (e.g. droplets or weeping).	1.4	10	4.0	
Substantial Deterioration	There is evidence of major corrosion or a significant active and unrepairable oil leak (e.g. pools of oil collecting on the ground or plinth).	1.8	10	8.0	
Default	No data available	1	10	0.5	

TABLE 83: OBSERVED CONDITION INPUT - EHV TRANSFORMER (GM): MAIN TANK CONDITION

TABLE 84: OBSERVED CONDITION INPUT - EHV TRANSFORMER (GM): COOLERS / RADIATOR CONDITION

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Superficial/minor deterioration	The asset (or a sub component) may exhibit signs of ageing, minor stains or marks (e.g. surface level scratches, moss or lichen that can be brushed off). This has no material impact on the probability of failure for the asset.	1	10	0.5
Some Deterioration	Localised areas of surface corrosion or evidence of oil leaks not associated with the transformer fins (e.g. manifolds and associated pipework, flanges, couplings, valves)	1.2	10	0.5
Substantial Deterioration	Widespread corrosion, loss of cross- sectional area or thinning or evidence of oil leakage from the fins.	1.4	10	5.5
Default	No data available	1	10	0.5

TABLE 85: OBSERVED CONDITION INPUT - EHV TRANSFORMER (GM): BUSHINGS CONDITION

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Superficial/minor deterioration	The asset component is fit for continued service. There is little deterioration	1	10	0.5
Some Deterioration	Minor corrosion or evidence of a historic oil leak (e.g. stains) or minor damage (e.g. small chips or cracks). Bushings with high levels of pollution with associated evidence of localised discharge or tracking.	1.2	10	0.5

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Substantial Deterioration	Visible cracks, broken sheds, damage, surface degradation, widespread/significant discharge activity and/or active oil leak (e.g. droplets, pools of oil).	1.4	10	5.5
Default	No data available	1	10	0.5

TABLE 86: OBSERVED CONDITION INPUT - EHV TRANSFORMER (GM): KIOSK CONDITION

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Superficial/minor deterioration	The asset component exhibits some deterioration but is fit for continued service. There is no or little obvious signs of corrosion.	1	10	0.5
Some Deterioration	The component asset shows a level of deterioration such as surface corrosion spots. The level of degradation may affect the operation of the asset if left untended (e.g. large patches of rust on the metalwork).	1.1	10	0.5
Substantial Deterioration	There is evidence of major corrosion or damage affecting the structural integrity.	1.2	10	0.5
Default	No data available	1	10	0.5

TABLE 87: OBSERVED CONDITION INPUT - EHV TRANSFORMER (GM): CABLE BOXES CONDITION

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
No Deterioration*	There are no signs of any deterioration such as corrosion, stains, markings, compound leaks, discharge etc.	1	10	0.5
Superficial / minor deterioration*	The cable box may exhibit minor exterior stains or marks (e.g. surface level scratches, moss or lichen that can be brushed off), but no damage or corrosion should be evident. No evidence of compound leaks, discharge, signs of heating, or deterioration of insulation.	1	10	0.5
Some Deterioration	Minor corrosion (e.g. surface corrosion spots) or deterioration (e.g. minor breakthrough of paintwork but no loss of galvanising).	1.1	10	0.5
Substantial Deterioration	Evidence of significant corrosion and perforation (e.g. holes). Severe breakthrough of paintwork with some loss of galvanising. Major compound leaks. Evidence of discharge, signs of heating, deterioration/ damage of insulation.	1.3	10	0.5
Default	No data available	1	10	0.5

* - note: as both the 'No Deterioration' and 'Superficial/minor deterioration' Condition Criteria for this Condition Input are treated in the same way by the Methodology, the categorisations for these two Condition Criteria may be combined in individual implementations of the Methodology.

B.5.12 EHV Transformer (GM) (Tapchanger component)

TABLE 88: OBSERVED CONDITION INPUT - EHV TRANSFORMER (GM): TAPCHANGER EXTERNAL CONDITION

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Superficial/minor deterioration	The asset component is fit for continued service. There is little deterioration	1	10	0.5
Some Deterioration	e.g. minor corrosion or evidence of low level oil leaks (If appropriate)	1.4	10	4.0
Substantial Deterioration	e.g. major corrosion or evidence of significant oil leakage	1.8	10	8.0
Default	No data available	1	10	0.5

TABLE 89: OBSERVED CONDITION INPUT - EHV TRANSFORMER (GM): INTERNAL CONDITION

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Superficial/minor deterioration	The asset component is fit for continued service. There is little deterioration	1	10	0.5
Some Deterioration	e.g. minor corrosion or evidence of low level oil leaks (If appropriate)	1.2	10	3.0
Substantial Deterioration	e.g. observed or potential mechanism defect, internal insulation, etc.	1.4	10	8.0
Default	No data available	1	10	0.5

TABLE 90: OBSERVED CONDITION INPUT - EHV TRANSFORMER (GM): DRIVE MECHANISM CONDITION

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
No deterioration	No observed deterioration	0.9	10	0.5
Superficial/minor deterioration	The asset component is fit for continued service. There is little deterioration	1	10	0.5
Some Deterioration	e.g. minor corrosion or wear to components	1.2	10	0.5
Substantial Deterioration	e.g. major corrosion or excessive wear in component and bearings	1.4	10	0.5
Default	No data available	1	10	0.5

TABLE 91: OBSERVED CONDITION INPUT - EHV TRANSFORMER (GM): CONDITION OF SELECTOR & DIVERTER CONTACTS

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
No deterioration	No observed deterioration	0.95	10	0.5
Superficial/minor deterioration	The asset component is fit for continued service. There is little deterioration	1	10	0.5
Some Deterioration	e.g. minor corrosion or wear	1.1	10	0.5
Substantial Deterioration	e.g. major corrosion or excessive wear in component and bearings	1.3	10	0.5
Default	No data available	1	10	0.5

TABLE 92: OBSERVED CONDITION INPUT - EHV TRANSFORMER (GM): CONDITION OF SELECTOR & DIVERTER BRAIDS					
Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar	
No deterioration	No observed deterioration	0.95	10	0.5	
Superficial/minor deterioration	The asset component is fit for continued service. There is little deterioration	1	10	0.5	
Some Deterioration	e.g. minor corrosion or wear	1.05	10	0.5	
Substantial Deterioration	e.g. major corrosion or fraying of braids	1.1	10	0.5	
Default	No data available	1	10	0.5	

TABLE 20. ORSERVER CONDITION INDUIT. FULL TRANSFORMER (CM): CONDITION OF SELECTOR & DIVERTER REALING

B.5.13 132kV Transformer (GM) (Main Transformer component)

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Superficial/minor deterioration	The transformer may exhibit signs of ageing or marks (e.g. surface level scratches, moss or lichen that can be brushed off). This has no material impact on the probability of failure for the asset. There may be evidence of a small leak, but it does not present a significant impact to the overall probability of failure for the asset, for example: - There is a small active leak from a sub component (e.g. a pressure relief device) but this can be addressed through intervention of the sub component. The leak this is limited to staining of the asset or the ground around the asset.	1	10	0.5
Some Deterioration	The asset shows a level of deterioration such as surface corrosion spots or minor oil leaks. The level of degradation may affect the operation of the asset if left untended (e.g. large patches of rust on the metalwork); and/or there is evidence of a small active oil leak (e.g. droplets or weeping).	1.4	10	4.0
Substantial Deterioration	There is evidence of major corrosion or a significant active and unrepairable oil leak (e.g. pools of oil collecting on the ground or plinth).	1.8	10	8.0
Default	No data available	1	10	0.5

TABLE 93: OBSERVED CONDITION INPUT - 132KV TRANSFORMER (GM): MAIN TANK CONDITION

TABLE 94: OBSERVED CONDITION INPUT - 132KV TRANSFORMER (GM): COOLERS / RADIATOR CONDITION

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Superficial/minor deterioration	The asset (or a sub component) may exhibit signs of ageing, minor stains or marks (e.g. surface level scratches, moss or lichen that can be brushed off). This has no material impact on the probability of failure for the asset.	1	10	0.5
Some Deterioration	Localised areas of surface corrosion or evidence of oil leaks not associated with the transformer fins (e.g. manifolds and associated pipework, flanges, couplings, valves)	1.2	10	0.5
Substantial Deterioration	Widespread corrosion, loss of cross- sectional area or thinning or evidence of oil leakage from the fins.	1.4	10	5.5
Default	No data available	1	10	0.5

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Superficial/minor deterioration	The asset component is fit for continued service. There is little deterioration	1	10	0.5
Some Deterioration	Minor corrosion or evidence of a historic oil leak (e.g. stains) or minor damage (e.g. small chips or cracks). Bushings with high levels of pollution with associated evidence of localised discharge or tracking.	1.2	10	0.5
Substantial Deterioration	Visible cracks, broken sheds, damage, surface degradation, widespread/significant discharge activity and/or active oil leak (e.g. droplets, pools of oil).	1.4	10	5.5
Default	No data available	1	10	0.5

TABLE 95: OBSERVED CONDITION INPUT - 132KV TRANSFORMER (GM): BUSHINGS CONDITION

TABLE 96: OBSERVED CONDITION INPUT - 132KV TRANSFORMER (GM): KIOSK CONDITION

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Superficial/minor deterioration	The asset component exhibits some deterioration but is fit for continued service. There is no or little obvious signs of corrosion.	1	10	0.5
Some Deterioration	The component asset shows a level of deterioration such as surface corrosion spots. The level of degradation may affect the operation of the asset if left untended (e.g. large patches of rust on the metalwork).	1.1	10	0.5
Substantial Deterioration	There is evidence of major corrosion or damage affecting the structural integrity.	1.2	10	0.5
Default	No data available	1	10	0.5

TABLE 97: OBSERVED CONDITION INPUT - 132KV TRANSFORMER (GM): CABLE BOXES CONDITION

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
No Deterioration*	There are no signs of any deterioration such as corrosion, stains, markings, compound leaks, discharge etc.	1	10	0.5
Superficial / minor deterioration*	The cable box may exhibit minor exterior stains or marks (e.g. surface level scratches, moss or lichen that can be brushed off), but no damage or corrosion should be evident. No evidence of compound leaks, discharge, signs of heating, or deterioration of insulation.	1	10	0.5
Some Deterioration	Minor corrosion (e.g. surface corrosion spots) or deterioration (e.g. minor breakthrough of paintwork but no loss of galvanising).	1.1	10	0.5
Substantial Deterioration	Evidence of significant corrosion and perforation (e.g. holes). Severe breakthrough of paintwork with some loss of galvanising. Major compound leaks. Evidence of discharge, signs of heating, deterioration/ damage of insulation.	1.3	10	0.5
Default	No data available	1	10	0.5

* - note: as both the 'No Deterioration' and 'Superficial/minor deterioration' Condition Criteria for this Condition Input are treated in the same way by the Methodology, the categorisations for these two Condition Criteria may be combined in individual implementations of the Methodology.

B.5.14 132kV Transformer (GM) (Tapchanger component)

TABLE 98: OBSERVED CONDITION INPUT - 132KV TRANSFORMER (GM): TAPCHANGER EXTERNAL CONDITION

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Superficial/minor deterioration	The asset component is fit for continued service. There is little deterioration	1	10	0.5
Some Deterioration	e.g. minor corrosion or evidence of low level oil leaks (If appropriate)	1.4	10	4.0
Substantial Deterioration	e.g. major corrosion or evidence of significant oil leakage	1.8	10	8.0
Default	No data available	1	10	0.5

TABLE 99: OBSERVED CONDITION INPUT - 132KV TRANSFORMER (GM): INTERNAL CONDITION

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Superficial/minor deterioration	The asset component is fit for continued service. There is little deterioration	1	10	0.5
Some Deterioration	e.g. minor corrosion or evidence of low level oil leaks (If appropriate)	1.2	10	3.0
Substantial Deterioration	e.g. observed or potential mechanism defect, internal insulation, etc+	1.4	10	8.0
Default	No data available	1	10	0.5

TABLE 100: OBSERVED CONDITION INPUT - 132KV TRANSFORMER (GM): DRIVE MECHANISM CONDITION

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
No deterioration	No observed deterioration	0.9	10	0.5
Superficial/minor deterioration	The asset component is fit for continued service. There is little deterioration	1	10	0.5
Some Deterioration	e.g. minor corrosion or wear to components	1.2	10	0.5
Substantial Deterioration	e.g. major corrosion or excessive wear in component and bearings	1.4	10	0.5
Default	No data available	1	10	0.5

TABLE 101: OBSERVED CONDITION INPUT - 132KV TRANSFORMER (GM): CONDITION OF SELECTOR & DIVERTER CONTACTS

CONTACTO				
Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
No deterioration	No observed deterioration	0.95	10	0.5
Superficial/minor deterioration	The asset component is fit for continued service. There is little deterioration	1	10	0.5
Some Deterioration	e.g. minor corrosion or wear	1.1	10	0.5
Substantial Deterioration	e.g. major corrosion or excessive wear in component and bearings	1.3	10	0.5
Default	No data available	1	10	0.5

TABLE 102: OBSERVED CONDITION INPUT - 132KV TRANSFORMER (GM): CONDITION OF SELECTOR & DIVERTER BRAIDS

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
No deterioration	No observed deterioration	0.95	10	0.5
Superficial/minor deterioration	The asset component is fit for continued service. There is little deterioration	1	10	0.5
Some Deterioration	e.g. minor corrosion or wear	1.05	10	0.5
Substantial Deterioration	e.g. major corrosion or fraying of braids	1.1	10	0.5
Default	No data available	1	10	0.5

B.5.15 EHV Cable (Oil)

TABLE 103: OBSERVED CONDITION INPUT - EHV CABLE (OIL): PRESENCE OF CYSTALLINE LEAD				
Condition Criteria: Lead Crystallisation Present?	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
No	<u>Applicable to cables in the Lead sheath sub-division</u> <u>only:</u> No lead crystallisation has been identified in the sheath of the cable or any other lead sheath cable within the same hydraulic section, on any occasion where the lead sheath of the cable has been exposed (e.g. during fault repair, leak location, construction works etc.).	1	10	0.5
Yes	Applicable to cables in the Lead sheath sub-division only: Evidence of lead crystallisation has been identified in the sheath of the cable or any other lead sheath cable within the same hydraulic section, on one or more occasions where the lead sheath of the cable has been exposed (e.g. during fault repair, leak location, construction works etc.).	1.8	10	8
Not applicable	This condition input is not applicable because the exposed cable within the hydraulic section is in the Aluminium sheath sub-division or the Lead sheath cable section has not been exposed.	1	10	0.5
Default	No data available	1	10	0.5

TABLE 103: OBSERVED CONDITION INPUT - EHV CABLE (OIL): PRESENCE OF CYSTALLINE LEAD

*This condition is only collected by exception, i.e. when the cable section is uncovered for fault repair, leak detection, construction works etc.

B.5.16 EHV Cable (Gas)

TABLE 104: OBSERVED CONDITION INPUT - EHV CABLE (GAS): PRESENCE OF CRYSTALLINE LEAD

Condition Criteria: Lead Crystallisation Present?	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
No	Applicable to cables in the Lead sheath sub- division only: No lead crystallisation has been identified in the sheath of the cable or any other lead sheath cable within the same pneumatic section, on any occasion where the lead sheath of the cable has been exposed (e.g. during fault repair, leak location, construction works etc.).	1	10	0.5
Yes	Applicable to cables in the Lead sheath sub- division only: Evidence of lead crystallisation has been identified in the sheath of the cable or any other lead sheath cable within the same pneumatic section, on one or more occasions where the lead sheath of the cable has been exposed (e.g. during fault repair, leak location, construction works etc.).	1.8	10	8
Not applicable	This condition input is not applicable because the exposed cable within the pneumatic section is in the Aluminium sheath sub-division or the Lead sheath cable section has not been exposed.	1	10	0.5
Default	No data available	1	10	0.5

*This condition is only collected by exception, i.e. when the cable section is uncovered for fault repair, leak detection, construction works etc.

B.5.17 132kV Cable (Oil)

TABLE 105: OBSERVED CONDITION INPUT - 132KV CABLE (OIL): PRESENCE OF CRYSTALLINE LEAD				
Condition Criteria: Lead Crystallisation Present?	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
No	Applicable to cables in the Lead sheath sub-division only: No lead crystallisation has been identified in the sheath of the cable or any other lead sheath cable within the same hydraulic section, on any occasion where the lead sheath of the cable has been exposed (e.g. during fault repair, leak location, construction works etc.).	1	10	0.5
Yes	Applicable to cables in the Lead sheath sub-division only: Evidence of lead crystallisation has been identified in the sheath of the cable or any other lead sheath cable within the same hydraulic section, on one or more occasions where the lead sheath of the cable has been exposed (e.g. during fault repair, leak location, construction works etc.).	1.8	10	8
Not applicable	This condition input is not applicable because the exposed cable within the hydraulic section is in the Aluminium sheath sub-division or the Lead sheath cable section has not been exposed.	1	10	0.5
Default	No data available	1	10	0.5

TABLE 105: OBSERVED CONDITION INPUT - 132KV CABLE (OIL): PRESENCE OF CRYSTALLINE LEAD

*This condition is only collected by exception, i.e. when the cable section is uncovered for fault repair, leak detection, construction works etc.

B.5.18 132kV Cable (Gas)

TABLE 106: OBSERVED CONDITION INPUT - 132KV CABLE (GAS): PRESENCE OF CRYSTALLINE LEAD

Condition Criteria: Lead Crystallisation Present?	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
No	Applicable to cables in the Lead sheath sub-division only: No lead crystallisation has been identified in the sheath of the cable or any other lead sheath cable within the same pneumatic section, on any occasion where the lead sheath of the cable has been exposed (e.g. during fault repair, leak location, construction works etc.).	1	10	0.5
Yes	Applicable to cables in the Lead sheath sub-division only: Evidence of lead crystallisation has been identified in the sheath of the cable or any other lead sheath cable within the same pneumatic section, on one or more occasions where the lead sheath of the cable has been exposed (e.g. during fault repair, leak location, construction works etc.).	1.8	10	8
Not applicable	This condition input is not applicable because the exposed cable within the pneumatic section is in the Aluminium sheath sub-division or the Lead sheath cable section has not been exposed.	1	10	0.5
Default	No data available	1	10	0.5

*This condition is only collected by exception, i.e. when the cable section is uncovered for fault repair, leak detection, construction works etc.

B.5.19 Submarine Cable

Condition Criteria	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Good	The asset component exhibits deterioration but is fit for continued service.	1	10	0.5
Poor	e.g. visible damage to armour	1.6	10	5.5
Critical	e.g. mechanical damage to cable armour, loss of armour	1.8	10	8
Default	No data available	1	10	0.5

TABLE 107: OBSERVED CONDITION INPUT - SUBMARINE CABLE: EXTERNAL CONDITION ARMOUR

B.5.20 LV Poles

TABLE 108: OBSERVED CONDITION INPUT - LV POLE: VISUAL POLE CONDITION

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Acceptable	No significant defects observed. Pole may be new with no/few marks. May include poles with slight damage including (but not limited to) splits and general wear where no material impact on residual strength of pole.	1	10	0.5
Some Deterioration	Minor wear on pole or physical damage that will lead to loss of strength, but the short term integrity of the pole is not compromised.	1.3	10	4.0
Substantial Deterioration	Severe damage to pole. Parts may be chipped off, rotten or disfigured. e.g. visible splits, cracks, major physical damage affecting strength.	1.8	10	8.0
Default	No data available	1	10	0.5

TABLE 109: OBSERVED CONDITION INPUT - LV POLE: POLE TOP ROT

Condition Criteria: Pole Top Rot Present?	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
No	No pole top rot observed	1	10	0.5
Yes	Pole top rot is observed	1.3	10	0.5
Default	No data available	1	10	0.5

TABLE 110: OBSERVED CONDITION INPUT - LV POLE: POLE LEANING

Condition Criteria: Pole Leaning?	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
No	The pole is vertical	1	10	0.5
Yes	The pole is not vertical	1.2	10	0.5
Default	No data available	1	10	0.5

TABLE 111: OBSERVED CONDITION INPUT - LV POLE: BIRD / ANIMAL DAMAGE

Condition Criteria: Bird/ Animal Damage?	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
No	There is no animal damage	1	10	0.5
Yes	There is animal damage	1.3	10	0.5
Default	No data available	1	10	0.5

B.5.21 HV Poles

E

Г

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Acceptable	No significant defects observed. Pole may be new with no/few marks. May include poles with slight damage including (but not limited to) splits and general wear where no material impact on residual strength of pole.	1	10	0.5
Some Deterioration	Minor wear on pole or physical damage that will lead to loss of strength, but the short term integrity of the pole is not compromised.	1.3	10	4.0
Substantial Deterioration	Severe damage to pole. Parts may be chipped off, rotten or disfigured. E.g. visible splits, cracks, major physical damage affecting strength.	1.8	10	8.0
Default	No data available	1	10	0.5

TABLE 112: OBSERVED CONDITION INPUT - HV POLE: VISUAL POLE CONDITION

TABLE 113: OBSEI	RVED CONDITION INPUT – HV POLE: VIS	UAL POLE CONDITI	ON: POLE TOP	ROT

Condition Criteria: Pole Top Rot Present?	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
No	No pole top rot observed	1	10	0.5
Yes	Pole top rot is observed	1.3	10	0.5
Default	No data available	1	10	0.5

TABLE 114: OBSERVED CONDITION INPUT – HV POLE: POLE LEANING

Condition Criteria: Pole Leaning?	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
No	The pole is vertical	1	10	0.5
Yes	The pole is not vertical	1.2	10	0.5
Default	No data available	1	10	0.5

TABLE 115: OBSERVED CONDITION INPUT – HV POLE: BIRD / ANIMAL DAMAGE

Condition Criteria: Bird/ Animal Damage?	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
No	There is no animal damage	1	10	0.5
Yes	There is animal damage	1.3	10	0.5
Default	No data available	1	10	0.5

B.5.22 EHV Poles

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Acceptable	No significant defects observed. Pole may be new with no/few marks. May include poles with slight damage including (but not limited to) splits and general wear where no material impact on residual strength of pole.	1	10	0.5
Some Deterioration	Minor wear on pole or physical damage that will lead to loss of strength, but the short term integrity of the pole is not compromised.	1.3	10	4.0
Substantial Deterioration	Severe damage to pole. Parts may be chipped off, rotten or disfigured. e.g. visible splits, cracks, major physical damage affecting strength.	1.8	10	8.0
Default	No data available	1	10	0.5

TABLE 116: OBSERVED CONDITION INPUT - EHV POLE: VISUAL POLE CONDITION

TABLE 117: OBSERVED CONDITION INPUT - EHV POLE: POLE TOP ROT

Condition Criteria: Pole Top Rot Present?	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
No	No pole top rot observed	1	10	0.5
Yes	Pole top rot is observed	1.3	10	0.5
Default	No data available	1	10	0.5

TABLE 118: OBSERVED CONDITION INPUT - EHV POLE: POLE LEANING

Condition Criteria: Pole Leaning?	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
No	The pole is vertical	1	10	0.5
Yes	The pole is not vertical	1.2	10	0.5
Default	No data available	1	10	0.5

TABLE 119: OBSERVED CONDITION INPUT - EHV POLE: BIRD / ANIMAL DAMAGE

Condition Criteria: Bird/ Animal Damage?	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
No	There is no animal damage	1	10	0.5
Yes	There is animal damage	1.3	10	0.5
Default	No data available	1	10	0.5

B.5.23 EHV Towers (Tower Steelwork component)

-					
Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar	
Acceptable		1	4.4	0.5	
Mechanically Unsafe	Signs of wasting of steel cross-section, laminated rust, holes or loss of steel at edges, severe damage - requires urgent replacement	1.8	10	8	
Default	No data available	1	10	0.5	

TABLE 120: OBSERVED CONDITION INPUT - EHV TOWER: TOWER LEGS

TABLE 121: OBSERVED CONDITION INPUT - EHV TOWER: BRACINGS

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Acceptable		1	4.4	0.5
Mechanically Unsafe	Signs of wasting of steel cross-section, laminated rust, holes or loss of steel at edges, severe damage - requires urgent replacement	1.2	10	5.5
Default	No data available	1	10	0.5

TABLE 122: OBSERVED CONDITION INPUT - EHV TOWER: CROSSARMS

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Acceptable		1	4.4	0.5
Mechanically Unsafe	Signs of wasting of steel cross-section, laminated rust, holes or loss of steel at edges, severe damage - requires urgent replacement	1.8	10	8
Default	No data available	1	10	0.5

TABLE 123: OBSERVED CONDITION INPUT - EHV TOWER: PEAK

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Acceptable		1	4.4	0.5
Mechanically Unsafe	Signs of wasting of steel cross-section, laminated rust, holes or loss of steel at edges, severe damage - requires urgent replacement	1.2	10	5.5
Default	No data available	1	10	0.5

B.5.24 EHV Towers (Tower Paintwork component)

TABLE 124: OBSERVED CONDITION INPUT - EHV TOWER: PAINTWORK CONDITION

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
No deterioration		1	6.4	0.5
Superficial/minor deterioration	Slight rust breakthrough - up to 5% of surface area affected.	1.1	6.4	0.5
Some Deterioration	Moderate rust breakthrough - between 5% and 20% of surface area affected, and/or pitted rust	1.6	6.4	0.5
Substantial Deterioration	Severe rust breakthrough - more than 20% of surface area affected, AND/OR damaged or bent steelwork, AND/OR any blistered paintwork with evidence of severe rust underneath, painting/attention required urgently.	1.8	6.4	5.5
Default	No data available	1	6.4	0.5

B.5.25 EHV Towers (Tower Foundation component)

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
No deterioration	No observed deterioration	0.95	4.4	0.5
Superficial/minor deterioration	The asset component is fit for continued service. There is little deterioration	1	4.4	0.5
Some Deterioration	e.g. minor corrosion	1.4	10	4.0
Substantial Deterioration	Insufficient integrity to support tower loading	1.8	10	8.0
Default	No data available	1	10	0.5

TABLE 125: OBSERVED CONDITION INPUT - EHV TOWER: FOUNDATION CONDITION

B.5.26 132kV Towers (Tower Steelwork component)

TABLE 126: OBSERVED CONDITION INPUT - 132KV TOWER: TOWER LEGS

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Acceptable		1	4.4	0.5
Mechanically Unsafe	Signs of wasting of steel cross-section, laminated rust, holes or loss of steel at edges, severe damage - requires urgent replacement	1.8	10	8
Default	No data available	1	10	0.5

TABLE 127: OBSERVED CONDITION INPUT - 132KV TOWER: BRACINGS

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Acceptable		1	4.4	0.5
Mechanically Unsafe	Signs of wasting of steel cross-section, laminated rust, holes or loss of steel at edges, severe damage - requires urgent replacement	1.2	10	5.5
Default	No data available	1	10	0.5

TABLE 128: OBSERVED CONDITION INPUT - 132KV TOWER: CROSSARMS

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Acceptable		1	4.4	0.5
Mechanically Unsafe	Signs of wasting of steel cross-section, laminated rust, holes or loss of steel at edges, severe damage - requires urgent replacement	1.8	10	8
Default	No data available	1	10	0.5

TABLE 129: OBSERVED CONDITION INPUT - 132KV TOWER: PEAK

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Acceptable		1	4.4	0.5
Mechanically Unsafe	Signs of wasting of steel cross-section, laminated rust, holes or loss of steel at edges, severe damage - requires urgent replacement	1.2	10	5.5
Default	No data available	1	10	0.5

TABLE 130: OBSERVED CONDITION INPUT - 132KV TOWER: PAINTWORK CONDITION				
Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
No deterioration		1	6.4	0.5
Superficial/minor deterioration	Slight rust breakthrough - up to 5% of surface area affected.	1.1	6.4	0.5
Some Deterioration	Moderate rust breakthrough - between 5% and 20% of surface area affected, and/or pitted rust	1.6	6.4	0.5
Substantial Deterioration	Severe rust breakthrough - more than 20% of surface area affected, AND/OR damaged or bent steelwork, AND/OR any blistered paintwork with evidence of severe rust underneath, painting/attention required urgently.	1.8	6.4	5.5
Default	No data available	1	6.4	0.5

B.5.27 132kV Towers (Tower Paintwork component)

B.5.28 132kV Towers (Tower Foundation component)

TABLE 131: OBSERVED CONDITION INPUT - 132KV TOWER: FOUNDATION CONDITION

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
No deterioration	No observed deterioration	0.95	4.4	0.5
Superficial/minor deterioration	The asset component is fit for continued service. There is little deterioration	1	4.4	0.5
Some Deterioration	e.g. minor corrosion	1.4	10	4.0
Substantial Deterioration	Insufficient integrity to support tower loading	1.8	10	8.0
Default	No data available	1	10	0.5

B.5.29 EHV Fittings

TABLE 132: OBSERVED CONDITION INPUT - EHV FITTINGS: TOWER FITTINGS CONDITION

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
No deterioration	No observed deterioration	0.9	10	0.5
Superficial/minor deterioration	The asset component is fit for continued service. There is little deterioration	1.1	10	0.5
Some Deterioration	Partial Loss of required structural integrity	1.3	10	4.0
Substantial Deterioration	Loss of required structural integrity	1.4	10	8.0
Default	No data available	1	10	0.5

TABLE 133: OBSERVED CONDITION INPUT - EHV FITTINGS: CONDUCTOR FITTINGS CONDITION

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
No deterioration	No observed deterioration	0.9	10	0.5
Superficial/minor deterioration	The asset component is fit for continued service. There is little deterioration	1.1	10	0.5
Some Deterioration	Partial Loss of required Structural Integrity	1.3	10	4.0
Substantial Deterioration	Loss of required structural integrity	1.4	10	8.0
Default	No data available	1	10	0.5

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
No deterioration	No observed deterioration	0.9	10	0.5
Superficial/minor deterioration	The asset component is fit for continued service. There is little deterioration	1.1	10	0.5
Some Deterioration	Partial Loss of required electrical Integrity	1.3	10	4.0
Substantial Deterioration	Loss of required electrical integrity	1.4	10	8.0
Default	No data available	1	10	0.5

TABLE 134: OBSERVED CONDITION INPUT - EHV FITTINGS: INSULATORS - ELECTRICAL CONDITION

TABLE 135: OBSERVED CONDITION INPUT - EHV FITTINGS: INSULATORS - MECHANICAL CONDITION				
Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
No deterioration	No observed deterioration	0.9	10	0.5
Superficial/minor deterioration	The asset component is fit for continued service. There is little deterioration	1.1	10	0.5
Some Deterioration	Partial Loss of required structural integrity	1.3	10	4.0
Substantial Deterioration	Loss of required structural integrity	1.4	10	8.0
Default	No data available	1	10	0.5

B.5.30 132kV Fittings

TABLE 136: OBSERVED CONDITION INPUT - 132KV FITTINGS: TOWER FITTINGS CONDITION

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
No deterioration	No observed deterioration	0.9	10	0.5
Superficial/minor deterioration	The asset component is fit for continued service. There is little deterioration	1.1	10	0.5
Some Deterioration	Partial Loss of required Structural Integrity	1.3	10	4.0
Substantial Deterioration	Loss of required structural integrity	1.4	10	8.0
Default	No data available	1	10	0.5

TABLE 137: OBSERVED CONDITION INPUT - 132KV FITTINGS: CONDUCTOR FITTINGS CONDITION

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
No deterioration	No observed deterioration	0.9	10	0.5
Superficial/minor deterioration	The asset component is fit for continued service. There is little deterioration	1.1	10	0.5
Some Deterioration	Partial Loss of required Structural Integrity	1.3	10	4.0
Substantial Deterioration	Loss of required structural integrity	1.4	10	8.0
Default	No data available	1	10	0.5

TABLE 138: OBSERVED CONDITION INPUT - 132KV FITTINGS: INSULATORS - ELECTRICAL CONDITION

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
No deterioration	No observed deterioration	0.9	10	0.5
Superficial/minor deterioration	The asset component is fit for continued service. There is little deterioration	1.1	10	0.5
Some Deterioration	Partial Loss of required electrical integrity	1.3	10	4.0
Substantial Deterioration	Loss of required electrical integrity	1.4	10	8.0
Default	No data available	1	10	0.5

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
No deterioration	No observed deterioration	0.9	10	0.5
Superficial/minor deterioration	The asset component is fit for continued service. There is little deterioration	1.1	10	0.5
Some Deterioration	Partial Loss of required Structural Integrity	1.3	10	4.0
Substantial Deterioration	Loss of required structural integrity	1.4	10	8.0
Default	No data available	1	10	0.5

TABLE 139: OBSERVED CONDITION INPUT - 132KV FITTINGS: INSULATORS - MECHANICAL CONDITION

B.5.31 EHV Tower Line Conductor

TABLE 140: OBSERVED CONDITION INPUT - EHV TOWER LINE CONDUCTOR: VISUAL CONDITION

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
No deterioration	No observed deterioration	0.9	10	0.5
Superficial/minor deterioration	The asset component is fit for continued service. There is little deterioration	1.1	10	0.5
Some Deterioration	e.g. minor corrosion	1.3	10	4.0
Substantial Deterioration	e.g. bird caging, broken strands, loss of section	1.4	10	8.0
Default	No data available	1	10	0.5

TABLE 141: OBSERVED CONDITION INPUT - EHV TOWER LINE CONDUCTOR: MIDSPAN JOINTS

Condition Criteria: No. of Midspan Joints	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
0	No joints in the span. A span includes all conductors in that span	1	10	0.5
1	1 joint in the span	1.05	10	0.5
2	2 joints in the span	1.1	10	0.5
>2	More than two joints in the span	1.2	10	5.5
Default	No data available	1	10	0.5

B.5.32 132kV Tower Line Conductor

TABLE 142: OBSERVED CONDITION INPUT - 132KV TOWER LINE CONDUCTOR: VISUAL CONDITION

Condition Criteria: Observed Condition	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
No deterioration	No observed deterioration	0.9	10	0.5
Superficial/minor deterioration	The asset component is fit for continued service. There is little deterioration	1.1	10	0.5
Some Deterioration	e.g. minor corrosion	1.3	10	4.0
Substantial Deterioration	e.g. bird caging, broken strands, loss of section	1.4	10	8.0
Default	No data available	1	10	0.5

TABLE 143: OBSERVED CONDITION INPUT - 132KV TOWER LINE CONDUCTOR: MIDSPAN JOINTS

Condition Criteria: No. of Midspan Joints	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
0	No joints in the span. A span includes all conductors in that span	1	10	0.5
1	1 joint in the span	1.05	10	0.5
2	2 joints in the span	1.1	10	0.5
>2	More than two joints in the span	1.2	10	5.5
Default	No data available	1	10	0.5

B.6 Measured Condition Factors

B.6.1 Overview

The following calibration tables shall be used to determine the value of each Measured Condition Input for individual assets.

The Measured Condition Inputs consist of three elements:-

- i) A Condition Input Factor, which is used in the derivation of the Measured Condition Factor;
- ii) a Condition Input Cap, which specifies a Health Score value that is used in the derivation of the Measured Condition Cap;
- iii) a Condition Input Collar, which specifies a Health Score value that is used in the derivation of the Measured Condition Collar.

The use of Measured Condition Inputs to create the Measured Condition Modifier is described in Section 6.10.

DNOs shall map their own observed condition data to the criteria shown in these calibration tables, in order to determine the appropriate values for each of the Measured Condition Inputs. Where no data is available the default values for the Measured Condition Inputs shall be applied.

B.6.2 LV UGB

Condition Criteria: Operational Adequacy	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Operable	The LV UGB can be operated safely	1	10	0.5
Inoperable	The LV UGB cannot be operated or repaired	1.5	10	8
Default	No data available	1	10	0.5

TABLE 144: MEASURED CONDITION INPUT - LV UGB: OPERATIONAL ADEQUACY

B.6.3 LV Circuit Breaker

TABLE 145: MEASURED CONDITION INPUT - LV CIRCUIT BREAKER: OPERATIONAL ADEQUACY

Condition Criteria:	Description	Condition Input	Condition	Condition
Operational Adequacy	Description	Factor	Input Cap	Input Collar
Acceptable	The device can be operated safely	1	10	0.5
Unacceptable	The device cannot be operated safely	1.6	10	8
Default	No data available	1	10	0.5

B.6.4 LV Board (WM)

TABLE 146: MEASURED CONDITION INPUT - LV BOARD (WM): OPERATIONAL ADEQUACY

Condition Criteria: Operational Adequacy	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Operable	The LV Board can be operated safely	1	10	0.5
Inoperable - Secure	The LV Board cannot be operated but is physically secure	1.3	10	4.0
Inoperable - Hazardous	The LV Board cannot be operated and presents a hazard to either operator, the public or both	1.5	10	8.0
Default	No data available	1	10	0.5

B.6.5 LV Pillars

Condition Criteria: Operational Adequacy	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Operable	The LV Pillar can be operated safely	1	10	0.5
Inoperable - Secure	The LV Pillar cannot be operated but is physically secure	1.3	10	4.0
Inoperable - Hazardous	The LV Pillar cannot be operated and presents a hazard to either operator, the public or both	1.5	10	8.0
Default	No data available	1	10	0.5

TABLE 147: MEASURED CONDITION INPUT - LV PILLAR: OPERATIONAL ADEQUACY

B.6.6 HV Switchgear (GM) - Distribution

TABLE 148: MEASURED CONDITION INPUT - HV SWITCHGEAR (GM) - DISTRIBUTION: PARTIAL DISCHARGE

Condition Criteria: Partial Discharge Test Results	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Low	Low or negligible levels of partial discharge indicating no issues identified (e.g. a green condition using a TEV or <10% of manufacturers recommendation	1	10	0.5
Medium	Some moderate levels of partial discharge recorded (e.g. 'Amber' result from TEV measuring device or between 10% and 30% of the manufacturers recommendation)	1.1	10	0.5
High (Not Confirmed)	High levels of partial discharge indicating possible defect with plant / equipment, requiring further investigation (e.g. 'Red' result from TEV measuring device or above manufacturers recommendation)	1.3	10	5.5
High (Confirmed)	High partial discharge. Source of partial discharge confirmed as potential source of failure	1.5	10	8
Default	No data available	1	10	0.5

TABLE 149: MEASURED CONDITION INPUT - HV SWITCHGEAR (GM) - DISTRIBUTION: DUCTOR TEST				
Condition Criteria: Ductor Test Results	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
As New	The joint test result meets the manufacturers recommended value	1	10	0.5
up to 10% deterioration from new	Up to 10% deterioration from the 'As New' condition	1.1	10	0.5
> 10% deterioration from new	Over 10% deterioration from the 'As New' condition	1.3	10	0.5
Default	No data available	1	10	0.5

TABLE 150: MEASURED CONDITION INPUT - HV SWITCHGEAR (GM) - DISTRIBUTION: OIL TESTS

Condition Criteria: Oil Test Results	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
As New	The oil test result meets the required European Standard for new oil	1	10	0.5
Up to 10% deterioration from new	Up to 10% deterioration from the 'As New' condition	1.1	10	0.5
> 10% deterioration from new	Over 10% deterioration from the 'As New' condition	1.3	10	0.5
Default	No data available	1	10	0.5

TABLE 151: MEASURED CONDITI) - DISTRIBUTION:	TEMPERATURE	READINGS	
Condition Criteria: Temperature Readings	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Ambient or Below	At or below ambient temperature	0.9	10	0.5
Above Ambient	Above ambient temperature	1	10	0.5
Substantially Above Ambient	Operating above the manufacturers recommended maximum temperature	1.1	10	0.5
Default	No data available	1	10	0.5

TABLE 151: MEASURED CONDITION INPUT - HV SWITCHGEAR (GM) - DISTRIBUTION: TEMPERATURE READINGS

TABLE 152: MEASURED CONDITION INPUT - HV SWITCHGEAR (GM) - DISTRIBUTION: TRIP TEST

Condition Criteria: Trip Timing Test Result	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Pass	Trip time within acceptable range for the type of switchgear	1	10	0.5
Fail	Trip time slower than acceptable time for the type of switchgear	1.4	10	0.5
Default	No data available	1	10	0.5

B.6.7 HV Switchgear (GM) - Primary

TABLE 153: MEASURED CONDITION INPUT - HV SWITCHGEAR (GM) - PRIMARY: PARTIAL DISCHARGE **Condition Criteria: Condition Input** Condition Condition **Partial Discharge Test** Description Factor Input Cap Input Collar Results Low or negligible levels of partial discharge indicating no issues identified (e.g. a green Low 1 10 0.5 condition using a TEV or <10% of manufacturers recommendation Some moderate levels of partial discharge recorded (e.g. 'Amber' result from TEV Medium 10 0.5 1.1 measuring device or between 10% and 30% of the manufacturers recommendation) High levels of partial discharge indicating possible defect with plant / equipment, High (Not Confirmed) requiring further investigation (e.g. 'Red' result 1.3 10 5.5 from TEV measuring device or above manufacturers recommendation) High partial discharge. Source of partial High (Confirmed) discharge confirmed as potential source of 1.5 10 8 failure Default No data available 10 0.5 1

TABLE 154: MEASURED CONDITION INPUT - HV SWITCHGEAR (GM) - PRIMARY: DUCTOR TEST

Condition Criteria: Ductor Test Results	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
As New	The joint test result meets the manufacturers recommended value	1	10	0.5
Up to 10% deterioration from new	Up to 10% deterioration from the 'As New' condition	1.1	10	0.5
> 10% deterioration from new	Over 10% deterioration from the 'As New' condition	1.3	10	0.5
Default	No data available	1	10	0.5

Condition Criteria: IR Test Results	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
As New	The insulation test result meets the manufacturers recommended value	1	10	0.5
up to 10% deterioration from new	Up to 10% deterioration from the 'As New' condition	1.1	10	0.5
> 10% deterioration from new	Over 10% deterioration from the 'As New' condition	1.3	10	0.5
Default	No data available	1	10	0.5

TABLE 155: MEASURED CONDITION INPUT - HV SWITCHGEAR (GM) - PRIMARY: IR TEST

TABLE 156: MEASURED CONDITION INPUT - HV SWITCHGEAR (GM) - PRIMARY: OIL TESTS

Condition Criteria: Oil Test Results	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
As New	The oil test result meets the required European Standard for new oil	1	10	0.5
up to 10% deterioration from new	Up to 10% deterioration from the 'As New' condition	1.1	10	0.5
> 10% deterioration from new	Over 10% deterioration from the 'As New' condition	1.3	10	0.5
Default	No data available	1	10	0.5

TABLE 157: MEASURED CONDITION INPUT - HV SWITCHGEAR (GM) - PRIMARY: TEMPERATURE READINGS

Condition Criteria: Temperature Readings	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Ambient or Below	At or below ambient temperature	0.9	10	0.5
Above ambient	Above ambient temperature	1	10	0.5
Substantially above ambient	Operating above the manufacturers recommended maximum temperature	1.1	10	0.5
Default	No data available	1	10	0.5

TABLE 158: MEASURED CONDITION INPUT - HV SWITCHGEAR (GM) - PRIMARY: TRIP TEST

Condition Criteria: Trip Timing Test Result	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Pass	Trip time within acceptable range for the type of switchgear	1	10	0.5
Fail	Trip time slower than acceptable time for the type of switchgear	1.4	10	0.5
Default	No data available	1	10	0.5

B.6.8 EHV Switchgear (GM)

Condition Criteria: Partial Discharge Test Results	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Low	Low or negligible levels of partial discharge indicating no issues identified (e.g. a green condition using a TEV or <10% of manufacturers recommendation	1	10	0.5
Medium	Some moderate levels of partial discharge recorded (e.g. 'Amber' result from TEV measuring device or between 10% and 30% of the manufacturers recommendation)	1.1	10	0.5
High (Not Confirmed)	High levels of partial discharge indicating possible defect with plant / equipment, requiring further investigation (e.g. 'Red' result from TEV measuring device or above manufacturers recommendation)	1.3	10	5.5
High (Confirmed)	High partial discharge. Source of partial discharge confirmed as potential source of failure	1.5	10	8
Default	No data available	1	10	0.5

TABLE 159: MEASURED CONDITION INPUT - EHV SWITCHGEAR (GM): PARTIAL DISCHARGE

TABLE 160: MEASURED CONDITION INPUT - EHV SWITCHGEAR (GM): DUCTOR TEST

Condition Criteria: Ductor Test Results	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
As New	The joint test result meets the manufacturers recommended value	1	10	0.5
Up to 10% deterioration from new	Up to 10% deterioration from the 'As New' condition	1.1	10	0.5
> 10% deterioration from new	Over 10% deterioration from the 'As New' condition	1.3	10	0.5
Default	No data available	1	10	0.5

TABLE 161: MEASURED CONDITION INPUT - EHV SWITCHGEAR (GM): IR TEST

Condition Criteria: IR Test Results	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
As New	The insulation test result meets the manufacturers recommended value	1	10	0.5
Up to 10% deterioration from new	Up to 10% deterioration from the 'As New' condition	1.1	10	0.5
> 10% deterioration from new	Over 10% deterioration from the 'As New' condition	1.3	10	0.5
Default	No data available	1	10	0.5

TABLE 162: MEASURED CONDITION INPUT - EHV SWITCHGEAR (GM): OIL TESTS / GAS TESTS

Condition Criteria: Oil Test/ Gas Test Results	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
As New	The oil or gas test result meets the required European Standard for new oil or gas	1	10	0.5
Up to 10% deterioration from new	Up to 10% deterioration from the 'As New' condition	1.1	10	0.5
> 10% deterioration from new	Over 10% deterioration from the 'As New' condition	1.3	10	0.5
Default	No data available	1	10	0.5

-

Condition Criteria: Temperature Readings	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Ambient or Below	At or below ambient temperature	0.9	10	0.5
Above Ambient	Above ambient temperature	1	10	0.5
Substantially Above Ambient	Operating above the manufacturers recommended maximum temperature	1.1	10	0.5
Default	No data available	1	10	0.5

TABLE 163: MEASURED CONDITION INPUT - EHV SWITCHGEAR (GM): TEMPERATURE READINGS

TABLE 164: MEASURED CONDITION INPUT - EHV SWITCHGEAR (GM): TRIP TEST

Condition Criteria: Trip Timing Test Result	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Pass	Trip time within acceptable range for the type of switchgear	1	10	0.5
Fail	Trip time slower than acceptable time for the type of switchgear	1.4	10	0.5
Default	No data available	1	10	0.5

B.6.9 132kV Switchgear (GM)

TABLE 165: MEASURED CONDITION INPUT - 132KV SWITCHGEAR (GM): PARTIAL DISCHARGE

Condition Criteria: Partial Discharge Test Results	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Low	Low or negligible levels of partial discharge indicating no issues identified (e.g. a green condition using a TEV or <10% of manufacturers recommendation	1	10	0.5
Medium	Some moderate levels of partial discharge recorded (e.g. 'Amber' result from TEV measuring device or between 10% and 30% of the manufacturers recommendation)	1.1	10	0.5
High (Not Confirmed)	High levels of partial discharge indicating possible defect with plant / equipment, requiring further investigation (e.g. 'Red' result from TEV measuring device or above manufacturers recommendation)	1.3	10	5.5
High (Confirmed)	High partial discharge. Source of partial discharge confirmed as potential source of failure	1.5	10	8
Default	No data available	1	10	0.5

TABLE 166: MEASURED CONDITION INPUT - 132KV SWITCHGEAR (GM): DUCTOR TEST

Condition Criteria: Ductor Test Results	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
As New	The joint test result meets the manufacturers recommended value	1	10	0.5
up to 10% deterioration from new	Up to 10% deterioration from the 'As New' condition	1.1	10	0.5
> 10% deterioration from new	Over 10% deterioration from the 'As New' condition	1.3	10	0.5
Default	No data available	1	10	0.5

TABLE 167: MEASURED CONDITION INPUT - 132KV SWITCHGEAR (GM): IR TEST

Condition Criteria: IR Test Results	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
As New	The insulation test result meets the manufacturers recommended value	1	10	0.5
up to 10% deterioration from new	Up to 10% deterioration from the 'As New' condition	1.1	10	0.5
> 10% deterioration from new	Over 10% deterioration from the 'As New' condition	1.3	10	0.5
Default	No data available	1	10	0.5

Condition Criteria: Oil Test/ Gas Test Results	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
As New	The oil or gas test result meets the required European Standard for new oil or gas	1	10	0.5
up to 10% deterioration from new	Up to 10% deterioration from the 'As New' condition	1.1	10	0.5
> 10% deterioration from new	Over 10% deterioration from the 'As New' condition	1.3	10	0.5
Default	No data available	1	10	0.5

TABLE 168: MEASURED CONDITION INPUT - 132KV SWITCHGEAR (GM): OIL TESTS / GAS TESTS

TABLE 169: MEASURED CONDITION INPUT - 132KV SWITCHGEAR (GM): TEMPERATURE READINGS

Condition Criteria: Temperature Readings	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Ambient or Below	At or below ambient temperature	0.9	10	0.5
Above Ambient	Above ambient temperature	1	10	0.5
Substantially Above Ambient	Operating above the manufacturers recommended maximum temperature	1.1	10	0.5
Default	No data available	1	10	0.5

TABLE 170: MEASURED CONDITION INPUT - 132KV SWITCHGEAR (GM): TRIP TEST

Condition Criteria: Trip Timing Test Result	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Pass	Trip time within acceptable range for the type of switchgear	1	10	0.5
Fail	Trip time slower than acceptable time for the type of switchgear	1.4	10	0.5
Default	No data available	1	10	0.5

B.6.10 HV Transformer (GM)

TABLE 171: MEASURED CONDITION INPUT - HV TRANSFORMER (GM): PARTIAL DISCHARGE

Condition Criteria: Partial Discharge Test Result	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Low	Low or negligible levels of partial discharge indicating no issues identified (e.g. a green condition using a TEV or <10% of manufacturers recommendation	1	10	0.5
Medium	Some moderate levels of partial discharge recorded (e.g. 'Amber' result from TEV measuring device or between 10% and 30% of the manufacturers recommendation)	1.1	10	0.5
High (Not Confirmed)	High levels of partial discharge indicating possible defect with plant / equipment, requiring further investigation (e.g. 'Red' result from TEV measuring device or above manufacturers recommendation)	1.3	10	5.5
High (Confirmed)	High partial discharge. Source of partial discharge confirmed as potential source of failure	1.5	10	8
Default	No data available	1	10	0.5

TABLE 172: MEASURED CONDITION INPUT - HV TRANSFORMER (GM): TEMPERATURE READINGS

Condition Criteria: Temperature Reading	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Normal	Normally expected temperature for transformer loading	1	10	0.5
Moderately High	Slightly above normally expected temperature for transformer loading	1.2	10	0.5
Very High	Significantly above normally expected temperature for transformer loading	1.4	10	5.5
Default	No data available	1	10	0.5

B.6.11 EHV Transformer (GM) (Main Transformer Component)

TABLE IT O. MEAGORED				
Condition Criteria: Partial Discharge Test Result	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Low	Low or negligible levels of partial discharge indicating no issues identified (e.g. a green condition using a TEV or <10% of manufacturers recommendation	1	10	0.5
Medium	Some moderate levels of partial discharge recorded (e.g. 'Amber' result from TEV measuring device or between 10% and 30% of the manufacturers recommendation)	1.1	10	0.5
High (Not Confirmed)	High levels of partial discharge indicating possible defect with plant / equipment, requiring further investigation (e.g. 'Red' result from TEV measuring device or above manufacturers recommendation)	1.3	10	5.5
High (Confirmed)	High partial Discharge. Source of partial discharge confirmed as potential source of failure	1.5	10	8
Default	No data available	1	10	0.5

TABLE 173: MEASURED CONDITION INPUT - EHV TRANSFORMER (GM): MAIN TRANSFORMER PARTIAL DISCHARGE

TABLE 174: MEASURED CONDITION INPUT - EHV TRANSFORMER (GM): TEMPERATURE READINGS

Condition Criteria: Temperature Reading	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Normal	Normally expected temperature for transformer loading	1	10	0.5
Moderately High	Slightly above normally expected temperature for transformer loading	1.2	10	0.5
Very High	Significantly above normally expected temperature for transformer loading	1.4	10	5.5
Default	No data available	1	10	0.5

B.6.12 EHV Transformer (GM) (Tapchanger component)

Condition Criteria: Partial Discharge Test Result	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Low	Low or negligible levels of partial discharge indicating no issues identified (e.g. a green condition using a TEV or <10% of manufacturers recommendation	1	10	0.5
Medium	Some moderate levels of partial discharge recorded (e.g. 'Amber' result from TEV measuring device or between 10% and 30% of the manufacturers recommendation)	1.1	10	0.5
High (Not Confirmed)	High levels of partial discharge indicating possible defect with plant / equipment, requiring further investigation (e.g. 'Red' result from TEV measuring device or above manufacturers recommendation)	1.3	10	5.5
High (Confirmed)	High partial discharge. Source of partial discharge confirmed as potential source of failure	1.5	10	8
Default	No data available	1	10	0.5

TABLE 175: MEASURED CONDITION INPUT - EHV TRANSFORMER (GM): TAPCHANGER PARTIAL DISCHARGE

B.6.13 132kV Transformer (GM) (Main Transformer Component)

TABLE 176: MEASURED CONDITION INPUT - 132KV TRANSFORMER (GM): MAIN TRANSFORMER PARTIAL DISCHARGE

Condition Criteria: Partial Discharge Test Result	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Low	Low or negligible levels of partial discharge indicating no issues identified (e.g. a green condition using a TEV or <10% of manufacturers recommendation	1	10	0.5
Medium	Some moderate levels of partial discharge recorded (e.g. 'Amber' result from TEV measuring device or between 10% and 30% of the manufacturers recommendation)	1.1	10	0.5
High (Not Confirmed)	High levels of partial discharge indicating possible defect with plant / equipment, requiring further investigation (e.g. 'Red' result from TEV measuring device or above manufacturers recommendation)	1.3	10	5.5
High (Confirmed)	High partial discharge. Source of partial discharge confirmed as potential source of failure	1.5	10	8
Default	No data available	1	10	0.5

TABLE 177: MEASURED CONDITION INPUT - 132KV TRANSFORMER (GM): TEMPERATURE READINGS

Condition Criteria: Temperature Reading	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Normal	Normally expected temperature for transformer loading	1	10	0.5
Moderately High	Slightly above normally expected temperature for transformer loading	1.2	10	0.5
Very High	Significantly above normally expected temperature for transformer loading	1.4	10	5.5
Default	No data available	1	10	0.5

B.6.14 132kV Transformer (GM) (Tapchanger component)

Condition Criteria: Partial Discharge Test Result	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Low	Low or negligible levels of partial discharge indicating no issues identified (e.g. a green condition using a TEV or <10% of manufacturers recommendation	1	10	0.5
Medium	Some moderate levels of partial discharge recorded (e.g. 'Amber' result from TEV measuring device or between 10% and 30% of the manufacturers recommendation)	1.1	10	0.5
High (Not Confirmed)	High levels of partial discharge indicating possible defect with plant / equipment, requiring further investigation (e.g. 'Red' result from TEV measuring device or above manufacturers recommendation)	1.3	10	5.5
High (Confirmed)	High Partial Discharge. Source of partial discharge confirmed as potential source of failure	1.5	10	8
Default	No data available	1	10	0.5

TABLE 178: MEASURED CONDITION INPUT - 132KV TRANSFORMER (GM): TAPCHANGER PARTIAL DISCHARGE

B.6.15 EHV Cable (Non Pressurised)

TABLE 179: MEASURED CONDITION INPUT - EHV CABLE (NON PRESSURISED): SHEATH TEST

Condition Criteria: Sheath Test Result	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Pass	Satisfactory	1	10	0.5
Failed Minor	Failure requiring minor repair	1.3	10	0.5
Failed Major	Unacceptable sheath leakage or condition	1.6	10	5.5
Default	No data available	1	10	0.5

TABLE 180: MEASURED CONDITION INPUT - EHV CABLE (NON PRESSURISED): PARTIAL DISCHARGE

Condition Criteria: Partial Discharge Test Result	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Low	No unusual activity detected	1	10	0.5
Medium	PD detected requiring regular monitoring	1.15	10	0.5
High	Intervention required	1.5	10	5.5
Default	No data available	1	10	0.5

TABLE 181: MEASURED CONDITION INPUT - EHV CABLE (NON PRESSURISED): FAULT HISTORY

Condition Criteria: Fault Rate (faults per annum)	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
No historic faults recorded	No recorded faults or failures in the period	1	5.4	0.5
<0.01 per km		1.3	10	0.5
≥0.01 and <0.1 per km	The calculated fault rate for the asset in	1.6	10	5.5
≥0.1 per km	the period -	1.8	10	8
Default	No data available	1	10	0.5

TABLE 182: MEASURED CONDITION INPUT - EHV CABLE (OIL): LEAKAGE				
Condition Criteria: Leakage Rate	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
No (or very low) historic leakage recorded	No or negligible levels of leakage	1	10	0.5
Low/ moderate	Requires occasional intervention to maintain pressure	1.3	10	0.5
High	Requires regular intervention to maintain pressure	1.8	10	5.5
Very High	Requires intervention at the point of oil loss	2	10	8
Default	No data available	1	10	0.5

TABLE 182: MEASURED CONDITION INPUT - EHV CABLE (OIL): LEAKAGE

B.6.17 EHV Cable (Gas)

B.6.16 EHV Cable (Oil)

TABLE 183: MEASURED CONDITION INPUT - EHV CABLE (GAS): LEAKAGE

Condition Criteria: Leakage Rate	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
No (or very low) historic leakage recorded	No or negligible levels of leakage	1	10	0.5
Low/ moderate	Requires occasional intervention to maintain pressure	1.3	10	0.5
High	Requires regular intervention to maintain pressure	1.8	10	5.5
Very High	Requires intervention at the point of gas loss	2	10	8
Default	No data available	1	10	0.5

B.6.18 132kV Cable (Non Pressurised)

TABLE 184: MEASURED CONDITION INPUT - 132KV CABLE (NON PRESSURISED): SHEATH TEST

Condition Criteria: Sheath Test Result	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Pass	Satisfactory	1	10	0.5
Failed Minor	Failure requiring minor repair	1.3	10	0.5
Failed Major	Unacceptable Sheath Leakage or Condition	1.6	10	5.5
Default	No data available	1	10	0.5

TABLE 185: MEASURED CONDITION INPUT - 132KV CABLE (NON PRESSURISED): PARTIAL DISCHARGE

Condition Criteria: Partial Discharge Test Result	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Low	No unusual activity detected	1	10	0.5
Medium	PD detected requiring regular monitoring	1.15	10	0.5
High	Intervention required	1.5	10	5.5
Default	No data available	1	10	0.5

TABLE 186: MEASURED CONDITION INPUT - 132KV CABLE (NON PRESSURISED): FAULT HISTORY

Condition Criteria: Fault Rate (faults per annum)	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
No historic faults recorded	No recorded faults or failures in the period	1	5.4	0.5
<0.01 per km		1.3	10	0.5
≥0.01 and <0.1 per km	The calculated fault rate for the asset in	1.6	10	5.5
≥0.1 per km	the period	1.8	10	8
Default	No data available	1	10	0.5

B.6.19 132kV Cable (Oil)

TABLE 107. MEASURED CONDITION INPUT - 132RV CABLE (OIL). LEARAGE					
Condition Criteria: Leakage Rate	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar	
No (or very low) historic leakage recorded	No or negligible levels of leakage	1	10	0.5	
Low/ moderate	Requires occasional intervention to maintain pressure	1.3	10	0.5	
High	Requires regular intervention to maintain pressure	1.8	10	5.5	
Very High	Requires intervention at the point of oil loss	2	10	8	
Default	No data available	1	10	0.5	

TABLE 187: MEASURED CONDITION INPUT - 132KV CABLE (OIL): LEAKAGE

B.6.20 132kV Cable (Gas)

TABLE 188: MEASURED CONDITION INPUT - 132KV CABLE (GAS): LEAKAGE

Condition Criteria: Leakage Rate	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
No (or very low) historic leakage recorded	No or negligible levels of leakage	1	10	0.5
Low/ moderate	Requires occasional intervention to maintain pressure	1.3	10	0.5
High	Requires regular intervention to maintain pressure	1.8	10	5.5
Very High	Requires intervention at the point of gas loss	2	10	8
Default	No data available	1	10	0.5

B.6.21 Submarine Cable

TABLE 189: MEASURED CONDITION INPUT - SUBMARINE CABLE: SHEATH TEST

Condition Criteria: Sheath Test Result	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Pass	Satisfactory	1	10	0.5
Failed Minor	Failure requiring minor repair	1.3	10	0.5
Failed Major	Unacceptable sheath leakage or condition	1.6	10	5.5
Default	No data available	1	10	0.5

TABLE 190: MEASURED CONDITION INPUT - SUBMARINE CABLE: PARTIAL DISCHARGE

Condition Criteria: Partial Discharge Test Result	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Low	No unusual activity detected	1	10	0.5
Medium	PD detected requiring regular monitoring	1.15	10	0.5
High	Intervention required	1.5	10	5.5
Default	No data available	1	10	0.5

TABLE 191: MEASURED CONDITION INPUT - SUBMARINE CABLE: FAULT HISTORY

Condition Criteria: Fault Rate (faults per annum)	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
No historic faults recorded	No recorded faults or failures in the period	1	5.4	0.5
<0.01 per km		1.3	10	0.5
≥0.01 and <0.1 per km	The calculated fault rate for the asset in the period	1.6	10	5.5
≥0.1 per km		1.8	10	8
Default	No data available	1	10	0.5

B.6.22 LV Poles

TABLE 132: MEASURED CONDITION INFOL - LV FOEL FOEL DECKLY DETERIONATION					
Condition Criteria: Degree of Decay/Deterioration	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar	
None	Zero measured loss of strength	0.8	5.4	0.5	
No Significant Decay/Deterioration	Minor loss of strength	1	6.4	0.5	
High	Significant loss of residual strength, still within acceptable level	1.4	10	5.5	
Very High	Residual strength below acceptable level	1.8	10	8	
Default	No data available	1	10	0.5	

TABLE 192: MEASURED CONDITION INPUT - LV POLE: POLE DECAY / DETERIORATION

B.6.23 HV Poles

TABLE 193: MEASURED CONDITION INPUT - HV POLE: POLE DECAY / DETERIORATION

Condition Criteria: Degree of Decay/Deterioration	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
None	Zero measured loss of strength	0.8	5.4	0.5
No Significant Decay/Deterioration	Minor loss of strength	1	6.4	0.5
High	Significant loss of residual strength, still within acceptable level	1.4	10	5.5
Very High	Residual strength below acceptable level	1.8	10	8
Default	No data available	1	10	0.5

B.6.24 EHV Poles

TABLE 194: MEASURED CONDITION INPUT - EHV POLE: POLE DECAY / DETERIORATION

Condition Criteria: Degree of Decay/Deterioration	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
None	Zero measured loss of strength	0.8	5.4	0.5
No Significant Decay/Deterioration	Minor loss of strength	1	6.4	0.5
High	Significant loss of residual strength, still within acceptable level	1.4	10	5.5
Very High	Residual strength below acceptable level	1.8	10	8
Default	No data available	1	10	0.5

B.6.25 EHV Fittings

TABLE 195: MEASURED CONDITION INPUT - EHV FITTINGS: THERMAL IMAGING

Condition Criteria: Thermal Imaging Result	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Low	Ambient plus or minus 10ºC	1	5.4	0.5
Medium	Ambient plus 10 - 25ºC	1.1	10	0.5
High	Ambient plus more than 25°C	1.4	10	5.5
Default	No data available	1	10	0.5

TA	TABLE 196: MEASURED CONDITION INPUT - EHV FITTINGS: DUCTOR TEST					
Condition Criteria: Ductor Test Result	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar		
Low	As commissioned or up to 2.5% variance	1	5.4	0.5		
Medium	As commissioned or up to 5% variance	1.1	10	0.5		
High	As commissioned or over 5% variance	1.4	10	5.5		
Default	No data available	1	10	0.5		

B.6.26 132kV Fittings

TABLE 197: MEASURED CONDITION INPUT - 132KV FITTINGS: THERMAL IMAGING Condition Criteria: **Condition Input** Condition Condition Thermal Imaging Description Factor Input Cap Input Collar Result Ambient plus or minus 10°C Low 5.4 0.5 1 Ambient plus 10 - 25°C 1.1 10 0.5 Medium Ambient plus more than 25°C High 1.4 10 5.5 Default 0.5

No data available 1 10

TABLE 198: MEASURED CONDITION INPUT - 132KV FITTINGS: DUCTOR TEST					
Condition Criteria: Ductor Test Result	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar	
Low	As commissioned or up to 2.5% variance	1	5.4	0.5	
Medium	As commissioned or up to 5% variance	1.1	10	0.5	
High	As commissioned or over 5% variance	1.4	10	5.5	
Default	No data available	1	10	0.5	

B.6.27 EHV Tower Line Conductor

TABLE 133: MEAGINED CONDITION IN OT - EITY TOWER EINE CONDUCTOR, CONDUCTOR CAMI EINC					
Condition Criteria: Conductor Sampling Result	Description Condition Input Factor		Condition Input Cap	Condition Input Collar	
Low	No obvious or minor deterioration	1	5.4	0.5	
Medium/Normal	Wear is consistent with the duty and environment of the circuit	1.1	10	3.0	
High	Wear indicated that an end of life condition exists	1.4	10	8.0	
Default	No data available	1	10	0.5	

TABLE 199: MEASURED CONDITION INPUT - EHV TOWER LINE CONDUCTOR: CONDUCTOR SAMPLING

TABLE 200: MEASURED CONDITION INPUT - EHV TOWER LINE CONDUCTOR: CORROSION MONITORING SURVEY

Condition Criteria: Corrosion Monitoring Survey Result	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Low	No obvious or minor deterioration	1	5.4	0.5
Medium/Normal	Wear is consistent with the duty and environment of the circuit	1.1	10	3.0
High	Wear indicated that an end of life condition exists	1.4	10	8.0
Default	No data available	1	10	0.5

B.6.28 132kV Tower Line Conductor

TABLE 201: MEASURED CONDITION INPUT - 132KV TOWER LINE CONDUCTOR: CONDUCTOR SAMPLING

Condition Criteria: Conductor Sampling Result	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Low	No obvious or minor deterioration 1		5.4	0.5
Medium/Normal	Wear is consistent with the duty and environment of the circuit	1.1	10	3.0
High	Wear indicated that an end of life condition exists	1.4	10	8.0
Default	No data available	1	10	0.5

TABLE 202: MEASURED CONDITION INPUT - 132KV TOWER LINE CONDUCTOR: CORROSION MONITORING SURVEY

Condition Criteria: Corrosion Monitoring Survey Result	Description	Condition Input Factor	Condition Input Cap	Condition Input Collar
Low	No obvious or minor deterioration	1	5.4	0.5
Medium/Normal	Wear is consistent with the duty and environment of the circuit	1.1	10	3.0
High	Wear indicated that an end of life condition exists	1.4	10	8.0
Default	No data available	1	10	0.5

B.7 Oil Test Modifier

	HV Transformer (GM) EHV Transformer			132kV Transformer		
> Moisture (ppm)	<= Moisture (ppm)	Moisture Score	> Moisture (ppm)	<= Moisture (ppm)	Moisture Score	
-0.01	15.00	0	-0.01	15.00	0	
15.00	30.00	2	15.00	20.00	2	
30.00	40.00	4	20.00	30.00	4	
40.00	50.00	8	30.00	40.00	8	
50.00	10000.00	10	40.00	10000.00	10	

TABLE 203: MOISTURE CONDITION STATE CALIBRATION

TABLE 204: ACIDITY CONDITION STATE CALIBRATION

HV Transformer (GM)		E	EHV Transformer		132kV Transformer			
> Acidity (mg KOH/g)	<= Acidity (mg KOH/g)	Acidity Score	> Acidity (mg KOH/g)	<= Acidity (mg KOH/g)	Acidity Score	> Acidity (mg KOH/g)	<= Acidity (mg KOH/g)	Acidity Score
-	-	-	-0.01	0.10	0	-0.01	0.05	0
-0.01	0.15	2	0.10	0.15	2	0.05	0.10	2
0.15	0.30	4	0.15	0.30	4	0.10	0.20	4
0.30	0.50	8	0.30	0.40	8	0.20	0.30	8
0.50	10000.00	10	0.40	10000.00	10	0.30	10000.00	10

TABLE 205: BREAKDOWN STRENGTH CONDITION STATE CALIBRATION

HV Transformer (GM) EHV Transformer			132kV Transformer		
> BD Strength (kV)	<= BD Strength (kV)	BD Strength Score	> BD Strength (kV)	<= BD Strength (kV)	BD Strength Score
-0.01	30.00	10	-0.01	40.00	10
30.00	40.00	4	40.00	50.00	4
40.00	50.00	2	50.00	60.00	2
50.00	10000.00	0	60.00	10000.00	0

TABLE 206: OIL TEST FACTOR CALIBRATION

HV Transformer (GM)				EHV Transformer 132kV Transformer		
> Oil Condition Score	<= Oil Condition Score	Oil Test Factor	> Oil Condition Score	<= Oil Condition Score	Oil Test Factor	
-	-	-	-0.01	50	0.90	
-0.01	250	1.00	50	200	1.00	
250	500	1.10	200	500	1.05	
500	1,000	1.20	500	1,000	1.10	
1,000	10,000	1.40	1,000	10,000	1.20	

TABLE 207: OIL TEST COLLAR CALIBRATION

HV Transformer (GM)				EHV Transformer 132kV Transformer		
> Oil Condition Score	<= Oil Condition Score	Oil Test Collar	> Oil Condition Score	<= Oil Condition Score	Oil Test Collar	
-	-	-	-0.01	50	0.5	
-0.01	250	0.5	50	200	0.5	
250	500	0.5	200	500	0.5	
500	1,000	0.5	500	1,000	0.5	
1,000	10,000	5.5	1,000	10,000	5.5	

B.8 DGA Test Modifier

TABLE 208: HYDROGEN CONDITION STATE CALIBRATION HV Transformer (GM) EHV Transformer 132kV Transformer					
> Hydrogen (ppm)	<= Hydrogen (ppm)	Hydrogen Condition State			
-0.01	20.00	0			
20.00 40.00 2					
40.00 100.00 4					
100.00	200.00	10			
200.00	10,000.00	16			

TABLE 208: HYDROGEN CONDITION STATE CALIBRATION

TABLE 209: METHANE CONDITION STATE CALIBRATION

HV Transformer (GM) EHV Transformer 132kV Transformer				
> Methane (ppm)	<= Methane (ppm)	Methane Condition State		
-0.01	10.00	0		
10.00	20.00	2		
20.00	50.00	4		
50.00	150.00	10		
150.00	10,000.00	16		

TABLE 210: ETHYLENE CONDITION STATE CALIBRATION

HV Transformer (GM) EHV Transformer 132kV Transformer					
> Ethylene (ppm)	<= Ethylene (ppm)	Ethylene Condition State			
-0.01	10.00	0			
10.00	20.00	2			
20.00	50.00	4			
50.00	150.00	10			
150.00	10,000.00	16			

TABLE 211: ETHANE CONDITION STATE CALIBRATION

HV Transformer (GM) EHV Transformer 132kV Transformer					
> Ethane (ppm)	<= Ethane (ppm)	Ethane Condition State			
-0.01	10.00	0			
10.00	20.00	2			
20.00	50.00	4			
50.00	150.00	10			
150.00	10,000.00	16			

TABLE 212: ACETYLENE CONDITION STATE CALIBRATION

HV Transformer (GM) EHV Transformer 132kV Transformer					
> Acetylene (ppm)	<= Acetylene (ppm)	Acetylene Condition State			
-0.01	1.00	0			
1.00	5.00	2			
5.00	20.00	4			
20.00	100.00	8			
100.00	10,000.00	10			

EHV Transformer 132kV Transformer					
> % Change	<= % Change	Change Category			
-1,000.00	-5.00	Negative			
-5.00	5.00	Neutral			
5.00	25.00	Small			
25.00	100.00	Significant			
100.00	1,000.00	Large			

TABLE 213: DGA CHANGE CATEGORY CALIBRATION

TABLE 214: DGA TEST FACTOR CALIBRATION EHV Transformer

132kV Transformer				
> % Change	DGA Test Factor			
Negative	0.90			
Neutral	1.00			
Small	1.10			
Significant	1.20			
Large	1.50			

B.9 FFA Test Modifier

TABLE 215: FFA TEST FACTOR

HV Transformer (GM) EHV Transformer 132kV Transformer					
> FFA value (ppm)	<= FFA value (ppm)	FFA Test Factor			
-0.01	4.00	1.00			
4.00	5.00	1.10			
5.00	6.00	1.25			
6.00	7.00	1.40			
7.00		1.60			

B.10 Ageing Reduction Factor

TABLE 216: AGEING REDUCTION FACTOR

Current Health Score	Ageing Reduction Factor
< 2	1
2 to 5.5	((Current Health Score - 2)/ 7) + 1
> 5.5	1.5

APPENDIX C INTERVENTIONS

Where work is carried out to either replace or refurbish an asset, that work will impact the value of the PoF and in some cases the CoF of the asset and hence a revised value of risk can be calculated for that asset. The change in the risk of the asset will be calculated by changes to the assets condition as observed or measured, being placed in the model and the model run to determine these changes. The change in risk will be calculated as the level of risk pre-intervention less the risk post-intervention.

Where a DNO needs to predict changes to the value of the overall risk present on their network due to their proposed work programme prior to that work being carried out, then the actual condition of the plant post intervention will not be able to be recorded. This is especially a problem where a refurbishment is proposed. In these cases, the principles within this appendix will be used and suitable assumption will be permitted. These assumptions will be stated when submitting the results to Ofgem.

Refurbishment Intervention Activity	Health Index Asset Category	Asset Register Category	Input Data Affected by Intervention
Complete replacement of the operating mechanism (ACB)	LV Switchgear	LV Circuit Breaker	Reassess Health Score Modifier by reassessing relevant Observed Condition Inputs, Measured Condition Inputs and Reliability Modifier
Replacement of complete feeder way	LV Switchgear	LV Pillar (ID), LV Pillar (OD at Substation) & LV Pillars (OD not at Substation)	Reassess Health Score Modifier by reassessing relevant Observed Condition Inputs, Measured Condition Inputs and Reliability Modifier
Complete factory refurbishment	HV Switchgear (GM) - Distribution	6.6/11kV CB (GM) Secondary, 6.6/11kV RMU, 6.6/11kV Switch (GM), 6.6/11kV X-type RMU, 20kV CB (GM) Secondary, 20kV RMU & 20kV Switch (GM)	Reassess Health Score Modifier by reassessing relevant Observed Condition Inputs, Measured Condition Inputs and Reliability Modifier
Complete Refurbishment (factory or onsite) e.g. strip down & rebuild, replacing all worn parts	HV Switchgear (GM) - Distribution	6.6/11kV CB (GM) Secondary, 6.6/11kV RMU, 6.6/11kV Switch (GM), 6.6/11kV X-type RMU, 20kV CB (GM) Secondary, 20kV RMU & 20kV Switch (GM)	Reassess Health Score Modifier by reassessing relevant Observed Condition Inputs, Measured Condition Inputs and Reliability Modifier
Complete replacement of the operating mechanism	HV Switchgear (GM) - Distribution	6.6/11kV CB (GM) Secondary, 6.6/11kV RMU, 6.6/11kV Switch (GM), 6.6/11kV X-type RMU, 20kV CB (GM) Secondary, 20kV RMU & 20kV Switch (GM)	Reassess Health Score Modifier by reassessing relevant Observed Condition Inputs, Measured Condition Inputs and Reliability Modifier
Replacement of cable boxes	HV Switchgear (GM) - Distribution	6.6/11kV CB (GM) Secondary, 6.6/11kV RMU, 6.6/11kV Switch (GM), 6.6/11kV X-type RMU, 20kV CB (GM) Secondary, 20kV RMU & 20kV Switch (GM)	Reassess Health Score Modifier by reassessing relevant Observed Condition Inputs, Measured Condition Inputs and Reliability Modifier
Replacement of the moving portion (truck) in withdrawable equipment	HV Switchgear (GM) - Distribution	6.6/11kV CB (GM) Secondary & 20kV CB (GM) Secondary	i) Reassess Health Score Modifier by reassessing relevant Observed Condition Inputs, Measured Condition Inputs and Reliability Modifier; and ii) Increase the Expected Life by 20 years
Complete factory refurbishment	HV Switchgear (GM) - Primary	6.6/11kV CB (GM) Primary & 20kV CB (GM) Primary	Reassess Health Score Modifier by reassessing relevant Observed Condition Inputs, Measured Condition Inputs and Reliability Modifier

TABLE 217: INPUT DATA AFFECTED BY REFURBISHMENT INTERVENTIONS

Refurbishment Intervention Activity	Health Index Asset Category	Asset Register Category	Input Data Affected by Intervention
Complete Refurbishment (factory or onsite) e.g. strip down & rebuild, replacing all worn parts	HV Switchgear (GM) - Primary	6.6/11kV CB (GM) Primary & 20kV CB (GM) Primary	Reassess Health Score Modifier by reassessing relevant Observed Condition Inputs, Measured Condition Inputs and Reliability Modifier
Complete replacement of the operating mechanism	HV Switchgear (GM) - Primary	6.6/11kV CB (GM) Primary & 20kV CB (GM) Primary	Reassess Health Score Modifier by reassessing relevant Observed Condition Inputs, Measured Condition Inputs and Reliability Modifier
Replacement of cable boxes	HV Switchgear (GM) - Primary	6.6/11kV CB (GM) Primary & 20kV CB (GM) Primary	Reassess Health Score Modifier by reassessing relevant Observed Condition Inputs, Measured Condition Inputs and Reliability Modifier
Replacement of the moving portion (truck) in withdrawable equipment	HV Switchgear (GM) - Primary	6.6/11kV CB (GM) Primary & 20kV CB (GM) Primary	i) Reassess Health Score Modifier by reassessing relevant Observed Condition Inputs, Measured Condition Inputs and Reliability Modifier; and ii) Increase the Expected Life by 20 years
Complete Refurbishment (factory or onsite) e.g. strip down & rebuild, replacing all worn parts	EHV Switchgear (GM)	33kV CB (Air Insulated Busbars)(ID) (GM), 33kV CB (Air Insulated Busbars)(OD) (GM), 33kV CB (Gas Insulated Busbars)(ID) (GM), 33kV CB (Gas Insulated Busbars)(OD) (GM), 33kV RMU, 33kV Switch (GM), 66kV CB (Air Insulated Busbars)(ID) (GM), 66kV CB (Air Insulated Busbars)(OD) (GM), 66kV CB (Gas Insulated Busbars)(ID) (GM) & 66kV CB (Gas Insulated Busbars)(OD) (GM)	Reassess Health Score Modifier by reassessing relevant Observed Condition Inputs, Measured Condition Inputs and Reliability Modifier
Complete replacement of the operating mechanism	EHV Switchgear (GM)	33kV CB (Air Insulated Busbars)(ID) (GM), 33kV CB (Air Insulated Busbars)(OD) (GM), 33kV CB (Gas Insulated Busbars)(ID) (GM), 33kV CB (Gas Insulated Busbars)(OD) (GM), 33kV RMU, 33kV Switch (GM), 66kV CB (Air Insulated Busbars)(ID) (GM), 66kV CB (Air Insulated Busbars)(OD) (GM), 66kV CB (Gas Insulated Busbars)(ID) (GM) & 66kV CB (Gas Insulated Busbars)(OD) (GM)	Reassess Health Score Modifier by reassessing relevant Observed Condition Inputs, Measured Condition Inputs and Reliability Modifier
Replacement of cable boxes	EHV Switchgear (GM)	33kV CB (Air Insulated Busbars)(ID) (GM), 33kV CB (Air Insulated Busbars)(OD) (GM), 33kV CB (Gas Insulated Busbars)(ID) (GM), 33kV CB (Gas Insulated Busbars)(OD) (GM), 33kV RMU, 33kV Switch (GM), 66kV CB (Air Insulated Busbars)(ID) (GM), 66kV CB (Air Insulated Busbars)(OD) (GM), 66kV CB (Gas Insulated Busbars)(ID) (GM) & 66kV CB (Gas Insulated Busbars)(OD) (GM)	Reassess Health Score Modifier by reassessing relevant Observed Condition Inputs, Measured Condition Inputs and Reliability Modifier

Refurbishment Intervention Activity	Health Index Asset Category	Asset Register Category	Input Data Affected by Intervention
Replacement of the moving portion (truck) in withdrawable equipment	EHV Switchgear (GM)	33kV CB (Air Insulated Busbars)(ID) (GM), 33kV CB (Air Insulated Busbars)(OD) (GM) & 33kV CB (Gas Insulated Busbars)(ID) (GM)	i) Reassess Health Score Modifier by reassessing relevant Observed Condition Inputs, Measured Condition Inputs and Reliability Modifier; and ii) Increase the Expected Life by 20 years
Complete Refurbishment (factory or onsite) e.g. strip down & rebuild, replacing all worn parts	132kV CBs	132kV CB (Air Insulated Busbars)(ID) (GM), 132kV CB (Air Insulated Busbars)(OD) (GM), 132kV CB (Gas Insulated Busbars)(ID) (GM) & 132kV CB (Gas Insulated Busbars)(OD) (GM)	Reassess Health Score Modifier by reassessing relevant Observed Condition Inputs, Measured Condition Inputs and Reliability Modifier
Complete replacement of the operating mechanism	132kV CBs	132kV CB (Air Insulated Busbars)(ID) (GM), 132kV CB (Air Insulated Busbars)(OD) (GM), 132kV CB (Gas Insulated Busbars)(ID) (GM) & 132kV CB (Gas Insulated Busbars)(OD) (GM)	Reassess Health Score Modifier by reassessing relevant Observed Condition Inputs, Measured Condition Inputs and Reliability Modifier
Replacement of cable boxes	132kV CBs	132kV CB (Air Insulated Busbars)(ID) (GM), 132kV CB (Air Insulated Busbars)(OD) (GM), 132kV CB (Gas Insulated Busbars)(ID) (GM) & 132kV CB (Gas Insulated Busbars)(OD) (GM)	Reassess Health Score Modifier by reassessing relevant Observed Condition Inputs, Measured Condition Inputs and Reliability Modifier
Complete factory refurbishment	HV Transformer (GM)	6.6/11kV Transformer (GM) & 20kV Transformer (GM)	Reassess Health Score Modifier by reassessing relevant Observed Condition Inputs, Measured Condition Inputs and Reliability Modifier
Installation of replacement windings	HV Transformer (GM)	6.6/11kV Transformer (GM) & 20kV Transformer (GM)	i) Reassess Health Score Modifier by reassessing relevant Observed Condition Inputs, Measured Condition Inputs and Reliability Modifier; and ii) Revise age to reflect time elapsed since Refurbishment undertaken
On site processing to recondition oil to remove moisture and acidity from windings	HV Transformer (GM)	6.6/11kV Transformer (GM) & 20kV Transformer (GM)	Reassess Health Score Modifier by reassessing relevant Observed Condition Inputs, Measured Condition Inputs and Reliability Modifier
Replacement of cooling radiators	HV Transformer (GM)	6.6/11kV Transformer (GM) & 20kV Transformer (GM)	Reassess Health Score Modifier by reassessing relevant Observed Condition Inputs and Measured Condition Inputs
Replacement of cable boxes	HV Transformer (GM)	6.6/11kV Transformer (GM) & 20kV Transformer (GM)	Reassess Health Score Modifier by reassessing relevant Observed Condition Inputs and Measured Condition Inputs
Complete factory refurbishment	EHV Transformer	33kV Transformer (GM) & 66kV Transformer	Reassess Health Score Modifier by reassessing relevant Observed Condition Inputs, Measured Condition Inputs and Reliability Modifier

Refurbishment Intervention Activity	Health Index Asset Category	Asset Register Category	Input Data Affected by Intervention
Installation of replacement windings	EHV Transformer	33kV Transformer (GM) & 66kV Transformer	 i) Reassess Health Score Modifier for Main Transformer subcomponent by reassessing relevant Observed Condition Inputs, Measured Condition Inputs, Oil Test Modifier, DGA Test Modifier, FFA Test Modifier and Reliability Modifier; and ii) Revise age to reflect time elapsed since Refurbishment undertaken
On site processing to recondition oil to remove moisture and acidity from windings	EHV Transformer	33kV Transformer (GM) & 66kV Transformer	Reassess Health Score Modifier for Main Transformer subcomponent by reassessing Oil Test Modifier
Replacement of bushings	EHV Transformer	33kV Transformer (GM) & 66kV Transformer	Reassess Health Score Modifier for Main Transformer subcomponent by reassessing relevant Observed Condition Inputs, Measured Condition Inputs and Reliability Modifier
Replacement of cooling radiators	EHV Transformer	33kV Transformer (GM) & 66kV Transformer	Reassess Health Score Modifier for Main Transformer subcomponent by reassessing relevant Observed Condition Inputs, Measured Condition Inputs and Reliability Modifier
Replacement of cable boxes	EHV Transformer	33kV Transformer (GM) & 66kV Transformer	Reassess Health Score Modifier for Main Transformer subcomponent by reassessing relevant Observed Condition Inputs, Measured Condition Inputs and Reliability Modifier
Replacement of gaskets & seals	EHV Transformer	33kV Transformer (GM) & 66kV Transformer	Reassess Health Score Modifier for Main Transformer subcomponent by reassessing relevant Observed Condition Inputs, Measured Condition Inputs and Reliability Modifier
Replacement of Tapchangers or full replacement of Tapchanger mechanism	EHV Transformer	33kV Transformer (GM) & 66kV Transformer	 i) Reassess Health Score Modifier for Tapchanger subcomponent by reassessing relevant Observed Condition Inputs, Measured Condition Inputs and Reliability Modifier; and ii) Where Tapchanger is replaced: revise age of Tapchanger subcomponent, used in the calculation of Initial Health Score, to the age of the new Tapchanger
Complete factory refurbishment	132kV Transformer	132kV Transformer	Reassess Health Score Modifier by reassessing relevant Observed Condition Inputs, Measured Condition Inputs and Reliability Modifier

Refurbishment Intervention Activity	Category		Input Data Affected by Intervention
Installation of replacement windings	132kV Transformer	132kV Transformer	i) Reassess Health Score Modifier for Main Transformer subcomponent by reassessing relevant Observed Condition Inputs, Measured Condition Inputs, Oil Test Modifier, DGA Test Modifier, FFA Test Modifier and Reliability Modifier; and ii) Revise age to reflect time elapsed since Refurbishment undertaken
On site processing to recondition oil to remove moisture and acidity from windings	132kV Transformer	132kV Transformer	Reassess Health Score Modifier for Main Transformer subcomponent by reassessing Oil Test Modifier
Replacement of bushings	132kV Transformer	132kV Transformer	Reassess Health Score Modifier for Main Transformer subcomponent by reassessing relevant Observed Condition Inputs, Measured Condition Inputs and Reliability Modifier
Replacement of cooling radiators	132kV Transformer	132kV Transformer	Reassess Health Score Modifier for Main Transformer subcomponent by reassessing relevant Observed Condition Inputs, Measured Condition Inputs and Reliability Modifier
Replacement of cable boxes	132kV Transformer	132kV Transformer	Reassess Health Score Modifier for Main Transformer subcomponent by reassessing relevant Observed Condition Inputs, Measured Condition Inputs and Reliability Modifier
Replacement of gaskets & seals	132kV Transformer	132kV Transformer	Reassess Health Score Modifier for Main Transformer subcomponent by reassessing relevant Observed Condition Inputs, Measured Condition Inputs and Reliability Modifier
Replacement of Tapchangers or full replacement of Tapchanger mechanism	132kV Transformer	132kV Transformer	 i) Reassess Health Score Modifier for Tapchanger subcomponent by reassessing relevant Observed Condition Inputs, Measured Condition Inputs and Reliability Modifier; and ii) Where Tapchanger is replaced: revise age of Tapchanger subcomponent, used in the calculation of Initial Health Score, to the age of the new Tapchanger
Pole Strengthening (e.g. clamping a steelwork supporting bracket to an existing pole)	LV Poles	LV Poles	Reassess Health Score Modifier by reassessing Pole Decay/Deterioration Measured Condition Inputs
Small footprint steel masts: Replacement of individual steelwork members	LV Poles	LV Poles	Reassess Health Score Modifier by reassessing relevant Observed Condition Inputs and Measured Condition Inputs
Pole Strengthening (e.g. clamping a steelwork supporting bracket to an existing pole)	HV Poles	6.6/11kV Poles & 20kV Poles	Reassess Health Score Modifier by reassessing Pole Decay/Deterioration Measured Condition Inputs

Refurbishment Intervention Activity	Health Index Asset Category	Asset Register Category	Input Data Affected by Intervention
Small footprint steel masts: Replacement of individual steelwork members	HV Poles	6.6/11kV Poles & 20kV Poles	Reassess Health Score Modifier by reassessing relevant Observed Condition Inputs and Measured Condition Inputs
Pole Strengthening (e.g. clamping a steelwork supporting bracket to an existing pole)	EHV Pole	33kV Pole & 66kV Pole	Reassess Health Score Modifier by reassessing Pole Decay/Deterioration Measured Condition Inputs
Small footprint steel masts: Replacement of individual steelwork members	EHV Pole	33kV Pole & 66kV Pole	Reassess Health Score Modifier by reassessing relevant Observed Condition Inputs and Measured Condition Inputs
Painting of Tower	EHV Tower	33kV Tower & 66kV Tower	 i) Reassess Health Score Modifier for Tower Paintwork subcomponent by reassessing Paintwork Condition Input; and ii) revise age of Tower Paintwork subcomponent, used in the calculation of Initial Health Score, to the time elapsed since the Tower was most recently painted
Replacement of individual steelwork members	EHV Tower	33kV Tower & 66kV Tower	Reassess Health Score Modifier for the Tower Steelwork subcomponent by reassessing relevant Observed Condition Inputs
Replacement of Tower foundations	EHV Tower	33kV Tower & 66kV Tower	Reassess Health Score Modifier for the Tower Foundation subcomponent by reassessing relevant Observed Condition Inputs
Painting of Tower	132kV Tower	132kV Tower	 i) Reassess Health Score Modifier for Tower Paintwork subcomponent by reassessing Paintwork Condition Input ii) revise age of Tower Paintwork subcomponent, used in the calculation of Initial Health Score, to the time elapsed since the Tower was most recently painted
Replacement of individual steelwork members	132kV Tower	132kV Tower	Reassess Health Score Modifier for the Tower Steelwork subcomponent by reassessing relevant Observed Condition Inputs
Replacement of Tower foundations	132kV Tower	132kV Tower	Reassess Health Score Modifier for the Tower Foundation subcomponent by reassessing relevant Observed Condition Inputs

Refurbishment Intervention Activity	cement/ remaking of all cable and terminations (including g ends) within a pneumatic n – where undertaken as a		Input Data Affected by Intervention
Replacement/ remaking of all cable joints and terminations (including sealing ends) within a pneumatic section – where undertaken as a single planned intervention			Reassess Health Score Modifier by reassessing relevant Measured Condition Inputs (incl. Leakage Rate Condition Input) This shall be performed by regarding the leakage history for any period prior to the completion of the refurbishment work as having no leakage, when determining the Leakage Rate Condition Input for the refurbished cable section, in any assessment of Health Score subsequent to the refurbishment works having been undertaken.
Replacement/ remaking of all cable joints and terminations (including sealing ends) within a pneumatic section – where undertaken as a single planned intervention	EHV Cable (Oil)	33kV UG Cable (Oil) & 66kV UG Cable (Oil)	Reassess Health Score Modifier by reassessing relevant Measured Condition Inputs (incl. Leakage Rate Condition Input) This shall be performed by regarding the leakage history for any period prior to the completion of the refurbishment work as having no leakage, when determining the Leakage Rate Condition Input for the refurbished cable section, in any assessment of Health Score subsequent to the refurbishment works having been undertaken.
Replacement/ remaking of all cable joints and terminations (including sealing ends) within a pneumatic section – where undertaken as a single planned intervention	132kV Cable (Gas)	132kV UG Cable (Gas)	Reassess Health Score Modifier by reassessing relevant Measured Condition Inputs (incl. Leakage Rate Condition Input) This shall be performed by regarding the leakage history for any period prior to the completion of the refurbishment work as having no leakage, when determining the Leakage Rate Condition Input for the refurbished cable section, in any assessment of Health Score subsequent to the refurbishment works having been undertaken.

Refurbishment Intervention Activity	Health Index Asset Category	Asset Register Category	Input Data Affected by Intervention
Replacement/ remaking of all cable joints and terminations (including sealing ends) within a pneumatic section – where undertaken as a single planned intervention	132kV Cable (Oil)	132kV UG Cable (Oil)	Reassess Health Score Modifier by reassessing relevant Measured Condition Inputs (incl. Leakage Rate Condition Input) This shall be performed by regarding the leakage history for any period prior to the completion of the refurbishment work as having no leakage, when determining the Leakage Rate Condition Input for the refurbished cable section, in any assessment of Health Score subsequent to the refurbishment works having been undertaken.

APPENDIX D CALIBRATION – CONSEQUENCES OF FAILURE

D.1 Financial

D.1.1 Reference Financial Cost of Failure

The Reference Financial Cost of Failure is derived from an assessment of the likely repair costs incurred by the failure of the asset in each of its three failure modes³; incipient, degraded and catastrophic and relative proportions of each failure mode type (as a proportion of the total number of failures).

Reference Financial Cost of Failure = (Proportion of Failures that are Incipient Failure × Likely Cost of Incipient Failure) + (Proportion of Failures that are Degraded Failures × Likely Cost of Degraded Failure) + (Proportion of Failures that are Catastrophic Failures × Likely Cost of Catastrophic Failure)

Where:

EQ. 27

- Proportion of Failures that are Incipient Failures represents the expected number of Incipient Failures as a percentage of the total number of Functional Failures.
- Proportion of Failures that are Degraded Failures represents the expected number of Degraded Failures as a percentage of the total number of Functional Failures.
- Proportion of Failures that are Catastrophic Failures represents the expected number of Catastrophic Failures as a percentage of the total number of Functional Failures.
- Likely Cost of Failure is the cost to return the asset to service (which may extend to full replacement of the asset). This is determined based on the three failure modes considered:-
 - <u>Incipient:</u> The costs associated with addressing an Incipient Failure would not usually necessitate full asset replacement. Unless otherwise stated, a value equivalent to 10% of the Asset Replacement Costs⁴ has been adopted.
 - <u>Degraded:</u> The costs associated with addressing a Degraded Failure would not usually necessitate full asset replacement; however, the works would normally be over and above those associated with addressing an Incipient Failure. Unless otherwise stated, a value equivalent to 25% of the Asset Replacement Costs has been adopted.
 - <u>Catastrophic</u>: A failure of this type would necessitate full asset replacement. Asset Replacement Costs have therefore been adopted, unless otherwise stated.

For Pressurised Cables (i.e. UG Cable (Gas) or UG Cable (Oil) assets), leakage of the pressurising fluid (i.e. gas or oil) that is addressed by topping up the fluid is considered, within the Functional Failures, as an Incipient Failure. The financial costs associated with Incipient Failures for these Asset Categories reflect the costs of such activity.

In establishing the generic and common PoF curves to describe the relative relationship between asset Health Score and PoF (Section 6.1) the number of failures by failure type (Incipient/Degraded/Catastrophic Failure) has been established in accordance with the definitions described in Section 4.2.

³ As defined in Appendix A – Functional Failures

⁴ As defined in Ofgem's expert view of industry costs as used in the cost assessment for the RIIO-ED1 Final Determination

Based on this understanding the relative proportions of a failure being an Incipient, Degraded or Catastrophic Failure have been determined for each Asset Category as outlined in Table 218.

Asset Register Category	Mode	Relative Proportion of Failure Modes (as a % of total Functional Failures)		Like	Likely Cost of Failure		
	I.	D	С	I.	D	C ⁴	of Failure
LV Poles	20%	70%	10%	£136	£1,358	£1,358	£1,113
6.6/11kV Poles	20%	70%	10%	£194	£1,942	£1,942	£1,592
20kV Poles	20%	70%	10%	£233	£2,330	£2,330	£1,910
33kV Pole	20%	70%	10%	£250	£2,503	£2,503	£2,053
66kV Pole	20%	70%	10%	£377	£3,774	£3,774	£3,094
33kV Tower	80%	19.95%	0.05%	£4,309	£10,773	£43,094	£5,618
66kV Tower	80%	19.95%	0.05%	£8,074	£20,186	£80,742	£10,527
132kV Tower	80%	19.95%	0.05%	£9,336	£23,341	£93,364	£12,172
33kV Fittings	80%	15%	5%	£113	£282	£1,126	£189
66kV Fittings	80%	15%	5%	£145	£363	£1,450	£243
132kV Fittings	80%	15%	5%	£241	£603	£2,411	£404
33kV OHL (Tower Line) Conductor	0%	85%	15%	£0	£12,879	£25,758	£14,811
66kV OHL Conductor	0%	85%	15%	£0	£17,082	£34,164	£19,644
132kV OHL (Tower Line) Conductor	0%	85%	15%	£0	£14,772	£29,544	£16,988
HV Sub Cable	0%	0%	100%	£3,030	£7,575	£151,492	£151,492
33kV UG Cable (Non Pressurised)	0%	0%	100%	£2,634	£6,585	£26,340	£26,340
33kV UG Cable (Oil)	99%	0.09%	0.01%	£100	£6,585	£26,340	£108
33kV UG Cable (Gas)	99%	0.50%	0.50%	£100	£6,585	£26,340	£264
66kV UG Cable (Non Pressurised)	0%	0%	100%	£5,329	£13,323	£53,291	£53,291
66kV UG Cable (Oil)	99%	0.09%	0.01%	£100	£13,323	£53,291	£116
66kV UG Cable (Gas)	99%	0.50%	0.50%	£100	£13,323	£53,291	£432
132kV UG Cable (Non Pressurised)	0%	0%	100%	£9,093	£22,733	£90,934	£90,934
132kV UG Cable (Oil)	99%	0.09%	0.01%	£100	£22,733	£90,934	£129
132kV UG Cable (Gas)	99%	0.50%	0.50%	£100	£22,733	£90,934	£667
EHV Sub Cable	0%	0%	100%	£4,750	£11,875	£237,500	£237,500
132kV Sub Cable	0%	0%	100%	£8,000	£20,000	£400,000	£400,000
LV Circuit Breaker	15%	25%	60%	£500	£1,250	£5,000	£3,388
LV Pillar (ID)	15%	25%	60%	£697	£1,741	£6,965	£4,719
LV Pillar (OD at Substation)	15%	25%	60%	£758	£1,895	£7,581	£5,136
LV UGB & LV Pillars (OD not at Substation)	15%	25%	60%	£421	£1,053	£4,213	£2,854
LV Board (WM)	15%	25%	60%	£962	£2,406	£9,624	£6,520
LV Board (X-type Network) (WM)	15%	25%	60%	£1,136	£2,839	£11,357	£7,694
6.6/11kV CB (GM) Primary	45%	50%	5%	£2,870	£7,176	£28,705	£6,315
6.6/11kV CB (GM) Secondary	15%	25%	60%	£855	£2,137	£8,550	£5,792
6.6/11kV Switch (GM)	15%	25%	60%	£647	£1,618	£6,471	£4,384
6.6/11kV RMU	15%	25%	60%	£1,209	£3,022	£12,089	£8,190
6.6/11kV X-type RMU	15%	25%	60%	£1,636	£4,090	£16,358	£11,083
20kV CB (GM) Primary	45%	50%	5%	£3,596	£8,990	£35,961	£7,911
20kV CB (GM) Secondary	15%	25%	60%	£886	£2,216	£8,863	£6,005
20kV Switch (GM)	15%	25%	60%	£750	£1,875	£7,500	£5,081
20kV RMU	15%	25%	60%	£1,231	£3,079	£12,315	£8,343
33kV CB (Air Insulated Busbars)(ID) (GM)	45%	50%	5%	£5,491	£13,728	£54,914	£12,081
33kV CB (Air Insulated Busbars)(DD) (GM)	45%	50%	5%	£6,761	£16,903	£67,610	£12,001 £14,874
33kV CB (Gas Insulated Busbars)(ID) (GM)		50%	5% 5%		£10,903 £20,794		
33kV CB (Gas Insulated Busbars)(ID) (GM) 33kV CB (Gas Insulated Busbars)(OD) (GM)	45% 45%	50%	5% 5%	£8,318 £8,318	£20,794 £20,794	£83,176 £83,176	£18,299 £18,299

TABLE 218: REFERENCE FINANCIAL COST OF FAILURE

Asset Register Category	Relative Proportion of Failure Modes (as a % of total Functional Failures)		Likely Cost of Failure			Reference Financial Cost	
	I.	D	С	I.	D	C ⁴	of Failure
33kV Switch (GM)	45%	50%	5%	£3,881	£9,702	£38,807	£8,537
33kV RMU	45%	50%	5%	£9,590	£23,976	£95,903	£21,099
66kV CB (Air Insulated Busbars)(ID) (GM)	45%	50%	5%	£10,946	£27,365	£109,459	£24,081
66kV CB (Air Insulated Busbars)(OD) (GM)	45%	50%	5%	£17,500	£43,750	£175,000	£38,500
66kV CB (Gas Insulated Busbars)(ID) (GM)	45%	50%	5%	£19,741	£49,353	£197,413	£43,431
66kV CB (Gas Insulated Busbars)(OD) (GM)	45%	50%	5%	£19,741	£49,353	£197,413	£43,431
132kV CB (Air Insulated Busbars)(ID) (GM)	45%	50%	5%	£30,682	£76,705	£306,821	£67,501
132kV CB (Air Insulated Busbars)(OD) (GM)	45%	50%	5%	£14,446	£36,115	£144,461	£31,781
132kV CB (Gas Insulated Busbars)(ID) (GM)	45%	50%	5%	£63,902	£159,755	£639,021	£140,585
132kV CB (Gas Insulated Busbars)(OD) (GM)	45%	50%	5%	£63,902	£159,755	£639,021	£140,585
6.6/11kV Transformer (GM)	15%	25%	60%	£1,142	£2,856	£11,422	£7,739
20kV Transformer (GM)	15%	25%	60%	£1,301	£3,251	£13,005	£8,811
33kV Transformer (GM)	45%	50%	5%	£33,182	£82,954	£331,816	£73,000
66kV Transformer	45%	50%	5%	£51,001	£127,504	£510,015	£112,203
132kV Transformer	45%	50%	5%	£99,514	£248,786	£995,144	£218,932

⁴ These are based on Ofgem's expert view of industry costs from the final determination cost assessment process from RIIO-ED1. For cables and conductor are expressed on a per km basis; however, the lengths replaced under fault conditions are typically less than that. Further, the cost of replacing these shorter lengths of cable or conductor is not directionally proportional to the cost of replacing much greater lengths as part of planned replacements works (i.e. the basis on which replacement costs are established). For the purposes of establishing the Reference Financial Consequence it is assumed that 10% of the costs incurred per km of activity would be incurred in carrying out a repair (typical length of 50m with a factor of 2 to reflect the lower efficiency for these types of works). For subsea cable the typical length replaced during a repair is 500m and therefore the cost of a Catastrophic Failure has been assumed to be 50% of the costs incurred per km (i.e. with no further efficiency adjustment factor).

D.1.2 Financial Consequence Factors

As described in Section 7.3.3 the resulting Reference Financial Cost of Failure value can then be modified for individual assets within an Asset Category based on the application of a Type Financial Factor and/or an Access Financial Factor to result in a Financial CoF that reflects the characteristics of an individual asset of that type.

D1.2.1 TYPE FINANCIAL FACTORS

Type Financial Factors other than 1, may be applied to those Asset Categories shown in Table 219, using the Type Financial Factor criteria shown. For all other Asset Categories this Factor shall be set to 1. Similarly, the default value of the Type Financial Factor shall be 1.

Asset Register Category	Type Financial Factor Criteria	Type Financial Factor
	Pole (excluding terminal poles)	1
LV Poles	Pole (terminal poles)	1.2
	Steel Poles	2
	Non Asbestos clad	1
LV Board (WM)	Asbestos clad	2
LV Deend (V true Network) (M/M)	Non Asbestos clad	1
LV Board (X-type Network) (WM)	Asbestos clad	2
	Pole (supporting conductor only)	1
6.6/11kV Poles	Pole (supporting plant or equipment)	1.7
	Small footprint steel masts	2
	Pole (supporting conductor only)	1
20kV Poles	Pole (supporting plant or equipment)	1.7
	Small footprint steel masts	2
	≥750kVA	1.15
6.6/11kV Transformer (GM)	≥500kVA and <750kVA	1
	<500kVA	0.85
	≥750kVA	1.15
20kV Transformer (GM)	≥500kVA and <750kVA	1
	<500kVA	0.85
	Pole (supporting conductor only)	1
33kV Pole	Pole (supporting plant or equipment)	1.7
	Small footprint steel masts	2
	Pole (supporting conductor only)	1
66kV Pole	Pole (supporting plant or equipment)	1.7
	Small footprint steel masts	2
33kV Tower	Suspension	1
	Tension	1.05
	Terminal	1.1
	Suspension	1
66kV Tower	Tension	1.05
	Terminal	1.1

	TABLE	219:	TYPE	FINANCIAL	FACTORS
--	-------	------	------	-----------	---------

Asset Register Category	Type Financial Factor Criteria	Type Financial Factor
	33/20kV, >20MVA CMR equivalent	1.25
	33/20kV, >10MVA and ≤20MVA CMR equivalent	1.1
224) / Transformer (CM)	33/20kV, ≤10MVA CMR equivalent	1
33kV Transformer (GM)	33/11 or 6.6kV, >20MVA CMR equivalent	1.1
	33/11 or 6.6kV, >10MVA and ≤20MVA CMR equivalent	1
	33/11 or 6.6kV, ≤10MVA CMR equivalent	0.9
	66/20kV, >20MVA CMR equivalent	1.25
	66/20kV, >10MVA and ≤20MVA CMR equivalent	1.1
	66/20kV, ≤10MVA CMR equivalent	1
	66/33kV	1.1
66kV Transformer (GM)	66/11/11kV	1.1
	66/11 or 6.6kV, >20MVA CMR equivalent	1.1
	66/11 or 6.6kV, >10MVA and ≤20MVA CMR equivalent	1
	66/11 or 6.6kV, ≤10MVA CMR equivalent	0.9
	Suspension	1
33kV Fittings	Tension	2
	Suspension	1
66kV Fittings	Tension	2
	Suspension	1
132kV Fittings	Tension	2
	Suspension	1
132kV Tower	Tension	1.05
	Terminal	1.1
	132/66kV, ≤60MVA	1.05
	132/66kV, >60MVA	1.15
	132/33kV, ≤60MVA	0.9
	132/33kV, >60MVA	1
132kV Transformer (GM)	132/11/11kV	1.1
	132/11kV	0.85
	132/20kV	0.95
	132/20/20kV	1.1

D1.2.2 ACCESS FINANCIAL FACTORS

Access Financial Factors other than 1, may be applied to those Asset Categories shown in Table 220 and Table 221, using the criteria shown. For all other Asset Categories this factor shall be set to 1. Similarly, the default value of Access Financial Factor shall be 1.

	Access Factor		
Asset Category	Type A Criteria - Normal Access (& Default Value)	Type B Criteria - Major Crossing (e.g. associated span crosses railway line, major road, large waterway etc.)	
LV OHL Support	1	3	
HV OHL Support - Poles	1	3	
EHV OHL Support - Poles	1	3	
EHV OHL Support - Towers	1	1.5	
EHV OHL Fittings (Tower Lines)	1	2	
EHV OHL Conductors (Tower Lines)	1	2	
132kV OHL Support - Tower	1	1.5	
132kV OHL Fittings (Tower Lines)	1	2	
132kV OHL Conductors (Tower Lines)	1	2	

TABL	Е	220:	ACCESS	FACTOR:	OHL
	-	~~ v.	ACCECC	I AO I OIN.	

TABLE 221: ACCESS FACTOR: SWITCHGEAR & TRANSFORMER ASSETS

	Access Factor		
Asset Category	Type A Criteria - Normal Access (& Default Value)	Type B Criteria - Constrained Access or Confined Working Space	Type C Criteria - Underground substation
LV Switchgear	1	1.25	1.7
HV Transformer (GM)	1	1.25	2
HV Switchgear (GM) - Distribution	1	1.25	1.7
HV Switchgear (GM) - Primary	1	1.15	1.3
EHV Switchgear (GM)	1	1.1	1.25
132kV CBs	1	1.1	1.2
EHV Transformer	1	1.1	1.35
132kV Transformer	1	1.1	1.25

D.2 Safety

D.2.1 Reference Safety Cost of Failure

Each Asset Category has an associated reference safety probability based on applying the appropriate value (of preventing a LTA or DSI) to the corresponding probability that each of these events occurs, categorised as follows:-

- i) LTA;
- ii) DSI to member of staff; and
- iii) DSI to member of the public.

These values have been derived from an assessment of both disruptive and non-disruptive failure probabilities for these events based on bottom up assessments of faults. The results of this analysis are shown in Table 222. These have been evaluated for each Asset Category using the following event tree:-

- i) probability that event could be hazardous;
- ii) probability that person who is present suffers the effect; and
- iii) probability that affected person is present when fault occurs.

The Reference Safety Cost of Failure is derived initially by applying the probability that a failure could result in an accident, serious injury or fatality to the cost of a Lost Time Accident (LTA) or Death or Serious Injury (DSI) as appropriate.

Reference Safety Cost of Failure = ((Probability of LTA × Cost of LTA) + ((Probability of DSI to the Public + Probability of DSI to the Staff)) × (Cost of DSI)) × Disproportion Factor

Where:

EQ. 30

- Cost of LTA is the Reference Cost of a Lost Time Accident as shown in Table 223
- Cost of DSI is the Reference Cost of a Death or Serious Injury as shown in Table 223
- Disproportion Factor is explained later in this section

TABLE 222: REFERENCE SAFETY PROBABILITIES				
	PROBABILITY	PROBABILITY OF EVENT PER ASSET FAILURE		
Asset Register Category	Lost Time Accident	Death or Serious Injury to public	Death or Serious Injury to staff	
LV Poles	0.000816	0.00003264	0.00001632	
6.6/11kV Poles	0.000272	0.00001088	0.00000544	
20kV Poles	0.000272	0.00001088	0.00000544	
33kV Pole	0.000272	0.00001088	0.00000544	
66kV Pole	0.000272	0.00001088	0.00000544	
33kV Tower	0.000136	0.00000544	0.0000272	
66kV Tower	0.000136	0.00000544	0.0000272	
132kV Tower	0.000136	0.00000544	0.0000272	
33kV Fittings	0.000544	0.00002176	0.0001088	
66kV Fittings	0.000544	0.00002176	0.0001088	
132kV Fittings	0.000544	0.00002176	0.0001088	
33kV OHL (Tower Line) Conductor	0.000544	0.00002176	0.0001088	
66kV OHL Conductor	0.000544	0.00002176	0.0001088	
132kV OHL (Tower Line) Conductor	0.000544	0.00002176	0.0001088	
HV Sub Cable	0.0000075	0.00000075	0.00000075	
33kV UG Cable (Non Pressurised)	0.0000075	0.00000075	0.00000075	
33kV UG Cable (Oil)	0.0000075	0.00000075	0.00000075	
33kV UG Cable (Gas)	0.0000075	0.00000075	0.00000075	
66kV UG Cable (Non Pressurised)	0.00000075	0.00000075	0.00000075	
66kV UG Cable (Oil)	0.00000075	0.00000075	0.00000075	
66kV UG Cable (Gas)	0.00000075	0.00000075	0.00000075	
132kV UG Cable (Non Pressurised)	0.0000075	0.00000075	0.00000075	
132kV UG Cable (Oil)	0.0000075	0.00000075	0.00000075	
132kV UG Cable (Gas)	0.0000075	0.00000075	0.00000075	
EHV Sub Cable	0.0000075	0.00000075	0.00000075	
132kV Sub Cable	0.00000075	0.00000075	0.00000075	

TABLE 222: REFERENCE SAFETY PROBABILITIES

	PROBABILITY OF EVENT PER ASSET FAILURE			
Asset Register Category	Lost Time Accident	Death or Serious Injury to public	Death or Serious Injury to staff	
LV Circuit Breaker	0.00004916	0.000434412	0.000370311	
LV Pillar (ID)	0.00004916	0.000434412	0.000370311	
LV Pillar (OD at Substation)	0.00004916	0.000434412	0.000370311	
LV UGB & LV Pillars (OD not at Substation)	0.00005193	0.000458912	0.000391196	
LV Board (WM)	0.00004916	0.000434412	0.000370311	
LV Board (X-type Network) (WM)	0.00004916	0.000434412	0.000370311	
6.6/11kV CB (GM) Primary	0.000260274	0.000115	0.001960616	
6.6/11kV CB (GM) Secondary	0.0000260274	0.00023	0.000196062	
6.6/11kV Switch (GM)	0.0000260274	0.00023	0.000196062	
6.6/11kV RMU	0.0000260274	0.00023	0.000196062	
6.6/11kV X-type RMU	0.0000260274	0.00023	0.000196062	
20kV CB (GM) Primary	0.000260274	0.000115	0.001960616	
20kV CB (GM) Secondary	0.0000260274	0.00023	0.000196062	
20kV Switch (GM)	0.0000260274	0.00023	0.000196062	
20kV RMU	0.0000260274	0.00023	0.000196062	
33kV CB (Air Insulated Busbars)(ID) (GM)	0.000260274	0.000115	0.001960616	
33kV CB (Air Insulated Busbars)(OD) (GM)	0.000260274	0.000115	0.001960616	
33kV CB (Gas Insulated Busbars)(ID) (GM)	0.000260274	0.000115	0.001960616	
33kV CB (Gas Insulated Busbars)(OD) (GM)	0.000260274	0.000115	0.001960616	
33kV Switch (GM)	0.000260274	0.000115	0.001960616	
33kV RMU	0.000260274	0.000115	0.001960616	
66kV CB (Air Insulated Busbars)(ID) (GM)	0.000260274	0.000115	0.001960616	
66kV CB (Air Insulated Busbars)(OD) (GM)	0.000260274	0.000115	0.001960616	
66kV CB (Gas Insulated Busbars)(ID) (GM)	0.000260274	0.000115	0.001960616	
66kV CB (Gas Insulated Busbars)(OD) (GM)	0.000260274	0.000115	0.001960616	
132kV CB (Air Insulated Busbars)(ID) (GM)	0.000416438	0.0000575	0.003136986	
132kV CB (Air Insulated Busbars)(OD) (GM)	0.000416438	0.0000575	0.003136986	
132kV CB (Gas Insulated Busbars)(ID) (GM)	0.000416438	0.0000575	0.003136986	
132kV CB (Gas Insulated Busbars)(OD) (GM)	0.000416438	0.0000575	0.003136986	
6.6/11kV Transformer (GM)	0.0000260274	0.00023	0.000196062	
20kV Transformer (GM)	0.0000260274	0.00023	0.000196062	
33kV Transformer (GM)	0.000260274	0.000115	0.001960616	
66kV Transformer	0.000260274	0.000115	0.001960616	
132kV Transformer	0.000416438	0.0000575	0.003136986	

The Reference Safety Costs for 'death or serious injury' and 'accident' are based on the HSE's GB cross-industry wide appraisal values for fatal injuries and for non-fatal injuries. These represent a quantification of the societal value of preventing an LTA or DSI.

TABLE 223: REFERENCE SAFETY COST		
Reference safety cost	Value (£)	
Lost Time Accident	£9,000	
Death or Serious Injury to public	£1.600.000	
Death or Serious Injury to staff	21,000,000	

In addition, a disproportion factor recognising the high risk nature of the electricity distribution industry is applied. Such disproportion factors are described by the HSE guidance when identifying reasonably practicable costs of mitigation. This value is not mandated by the HSE, but

they state that they believe that "the greater the risk, the more should be spent in reducing it, and the greater the bias should be on the side of safety". They also suggest that the extent of the bias must be argued in the light of all the circumstances and that the factor is unlikely to be higher than 10.

In the Methodology, the factor is set to 6.25, which serves to set the current value of a DSI at ± 10 m.

Reference safety cost	Value
Disproportion Factor	6.25

D.2.2 Safety Consequence Factors

As described in Section 7.4.3 the Safety CoF can then be derived for individual assets by the application of a Type Safety Factor and/or a Location Safety Factor so that it reflects the characteristics of an individual asset. These are detailed by Asset Category Grouping in Table 225 and Table 226. Where a Type or Location rating has not been determined, then the Medium (Default) rating shall be assumed.

D.2.2.1 SWITCHGEAR, TRANSFORMERS & OVERHEAD LINES

Under the Electricity Safety Quality and Continuity Regulations 2002 (ESQCR), risk assessments must be carried out on substation sites and overhead lines to assess the risk of interference, vandalism or unauthorised access to the asset by the public.

The overall risk value is built from the following components:-

- Type (Risk that the asset presents to the public by its characteristics and particular situation); and
- Location (Proximity to areas that may affect its likelihood of trespass or interference).

The overall Safety CoF Factors for Switchgear, Transformers and Overhead Lines are determined by these Type and Location Risk Ratings as shown in Table 225.

Safety Consequence Factor – Switchgear,			TYPE RISK RATING	
Transformers & Ove	ernead Lines	Low Medium (Default)		High
	Low	0.7	0.9	1.2
LOCATION RISK RATING	Medium (Default)	0.9	1	1.4
	High	1.2	1.4	1.6

TABLE 225: SAFETY CONSEQUENCE FACTOR – SWITCHGEAR, TRANSFORMERS & OVERHEAD LINES

D.2.2.3 CABLES

For cables there is a significant level of inherent safety of these asset types given the majority of the assets are buried. However, it is considered appropriate to modify the Reference Safety Cost of Failure to account for those situations where cables are exposed above ground, e.g. cable structures or where cables terminate onto overhead line supports.

The overall Safety CoF Factors for cable asset types are determined according to Table 226.

SAFETY CONSEQUENCE FACTOR - CABLES		
Buried	1.0	
Exposed (e.g. cable structure) 2.0		

TABLE 226: SAFETY CONSEQUENCE FACTOR - CABLES

D.2.3 Safety Risk Reduction Factor

As described in Section 7.4.3, a Safety Risk Reduction Factor is included in the derivation of Safety CoF. This is used to reflect the impact of measures that are taken to mitigate safety risks associated with individual assets. For LV UGB assets this applies to the mitigation of safety risks through the installation of safety protection blankets. The Safety Risk Reduction Factor is determined as shown in Table 227.

TABLE 227: SAFETY	RISK REDUCTION FACTOR

SAFETY RISK REDUCTION FACTOR		
LV UGB with Safety Blanket	0.5	
All other assets – including LV UGB without Safety Blanket, Switchgear, Transformers, Cables & Overhead Lines	1.0	
Default (no data available)	1.0	

D.3 Environmental

D.3.1 Reference Environmental Cost of Failure

The Environmental CoF value for an asset is derived using a Reference Environmental Cost of Failure, which is modified for individual assets using asset-specific factors. This is based on an assessment of the typical environmental impacts of a failure of the asset in each of its three failure modes; incipient, degraded and catastrophic. The Reference Environmental Cost of Failure that shall be used for each Asset Category is shown in Table 228.

This assessment considers four factors;

- i) Volume of oil lost;
- ii) Volume of SF₆ lost;
- iii) Probability of the event leading to a fire; and
- iv) Quantity of waste produced.

Reference Environmental Cost of Failure = (% of Incipient Failures) × ((Volume of oil lost per Incipient failure × Environmental cost per litre oil (£/litre)) + (Volume of SF₆ lost per Incipient failure × Environmental cost per kg of SF₆ lost (£/kg)) + (Probability of failure leading to a fire per Incipient failure × Environmental cost of fire) + (Quantity of waste produced per incipient failure × Environmental cost per tonne waste (£/t))) + (% of Degraded Failures) × ((Volume of oil lost per Degraded failure × Environmental cost per litre oil (£/litre)) + (Volume of SF₆ lost per Degraded failure × Environmental cost per kg of SF₆ lost (£/kg)) + (Probability of failure leading to a fire per Degraded failure × Environmental cost of fire) + (Quantity of waste produced per Degraded failure × Environmental cost of fire) + (Quantity of waste produced per Degraded failure × Environmental cost per tonne waste (£/t))) + (% of Catastrophic Failures) × ((Volume of oil lost per Catastrophic failure × Environmental cost per litre oil (£/litre)) + (Volume of SF₆ lost per Catastrophic failure × Environmental cost per kg of SF₆ lost (£/kg)) + (Probability of failure leading to a fire per Catastrophic failure × Environmental cost per kg of SF₆ lost (£/kg)) + (Probability of failure leading to a fire per Catastrophic failure × Environmental cost of fire) + Quantity of waste produced per Catastrophic failure × Environmental cost of fire) + Quantity of waste produced per Catastrophic failure × Environmental cost of fire) +

Where:

- Environmental cost per litre oil = £36.08/litre
- Environmental cost per kg of SF₆ lost = £240/kg Which is derived from:
 - Traded carbon price = £10.04/tonne
 - Cost of SF₆ loss c/w cost of carbon = 23,900kg(CO₂)/kg
- Environmental cost of fire = £5,000
- Environmental cost per tonne waste = £150/tonne

The sources for the above costs are shown in Table 17 in Section 7.5.2.

The detailed breakdown of the Reference Environmental Cost of Failure by Asset Category is shown in Table 228.

EQ. 32

Asset Category		er failur	ne of oil e (litres)	•	je volume per failur	e (kg)	failur	ge probabi e results ir	a fire		age quan e per fail	ure (t)	Failu	res as % o Failures	T	Reference Environmental Consequence
	0	D	C	0	D	C	0	D	C 0.0005	1 0.5	D 0.5	C 0.5	49%	D 49%	с 2%	£75
LV OHL Support	-		•	-	-	-	-	-		0.5						
HV OHL Support - Poles	0	0	0	0	0	0	0	0	0.0005	0.5	0.5	0.5	49%	49%	2%	£75
EHV OHL Support - Poles	0	0	0	0	0	0	0	0	0.0005	0.5	0.5	0.5	49%	49%	2%	£75
EHV UG Cable (Gas)	0	0	0	0	0	0	0	0	0.001	0.2	0.2	10	45%	54%	1%	£45
132kV UG Cable (Gas)	0	0	0	0	0	0	0	0	0.001	0.3	0.3	15	45%	54%	1%	£67
EHV UG Cable (Oil)	120	120	1200	0	0	0	0	0	0.001	0.8	0.8	40	45%	54%	1%	£4,898
132kV UG Cable (Oil)	150	150	1500	0	0	0	0	0	0.001	1.2	1.2	60	45%	54%	1%	£6,167
LV Switchgear	0	0	0	0	0	0	0	0.0002	0.005	0.01	0.1	0.25	50%	30%	20%	£18
LV UGB	0	0	0	0	0	0	0	0.0002	0.05	0.01	0.1	0.5	50%	30%	20%	£71
HV Switchgear (GM) - Primary	10	50	150	0.1	0.2	0.5	0	0.0005	0.01	0.1	0.2	0.5	65%	30%	5%	£1,102
HV Switchgear (GM) - Distribution	10	50	150	0.1	0.1	0.4	0	0.0005	0.01	0.1	0.2	0.5	65%	30%	5%	£1,093
EHV Switchgear (GM)	25	125	250	0.4	1	3	0	0.0005	0.01	0.2	0.5	2	70%	20%	10%	£2,694
132kV CBs	50	250	1000	4	10	30	0	0.0005	0.01	0.3	2	10	70%	20%	10%	£8,794
HV Transformer (GM)	20	100	300	0	0	0	0.0002	0.002	0.02	1	2	5	50%	40%	10%	£3,171
EHV Transformer	50	250	2500	0	0	0	0.0002	0.002	0.02	0.2	3	30	50%	40%	10%	£14,190
132kV Transformer	100	500	5000	0	0	0	0.0002	0.002	0.02	0.5	10	100	50%	40%	10%	£29,212
EHV UG Cable (Non Pressurised)	0	0	0	0	0	0	0	0	0.001	0	0	4	0%	0%	100%	£605
132kV UG Cable (Non Pressurised)	0	0	0	0	0	0	0	0	0.001	0	0	6	0%	0%	100%	£905
Submarine Cables	0	0	0	0	0	0	0	0	0	0	0	20	0%	0%	100%	£3,000
EHV OHL Support - Towers	0	0	0	0	0	0	0	0	0.001	0	0	1	0%	0%	100%	£155
132kV OHL Support - Tower	0	0	0	0	0	0	0	0	0.001	0	0	1	0%	0%	100%	£155
EHV OHL Fittings	0	0	0	0	0	0	0	0	0.001	0	0	0.5	0%	0%	100%	£80
132kV OHL Fittings	0	0	0	0	0	0	0	0	0.001	0	0	0.5	0%	0%	100%	£80
EHV OHL Conductor (Tower Lines)	0	0	0	0	0	0	0	0	0.001	0	0	0.5	0%	0%	100%	£80
132kV OHL Conductor (Tower Lines)	0	0	0	0	0	0	0	0	0.001	0	0	0.5	0%	0%	100%	£80

TABLE 228: REFERENCE ENVIRONMENTAL COST OF FAILURE

D.3.2 Environmental Consequence Factors

As described in Section 7.5.3 the resulting Reference Environmental Cost of Failure can then be modified for individual assets within that type based on the application of a Type Environmental Factor, Size Environmental Factor and/or a Location Environmental Factor to result in an Environmental CoF that reflects the characteristics of an individual asset of that type. These are shown in Table 229 by Asset Category Grouping.

The Type Environmental Factor for switchgear shall consider whether the individual asset contains oil or SF₆, either as an interruption medium or insulation medium,

TABLE 229: TYPE	TABLE 229: TYPE ENVIROMENTAL FACTOR											
Type environment factor	Oil	SF ₆	Neither	Default								
HV Switchgear (GM) - Primary	0.97	0.05	0.02	0.97								
HV Switchgear (GM) - Distribution	0.98	0.04	0.02	0.98								
EHV Switchgear (GM)	0.93	0.10	0.03	0.93								
132kV CBs	0.79	0.24	0.03	0.79								

|--|

All other Asset Categories are set to a default Type Environmental Factor of 1.

Asset Category	Size Environmental Factor Criteria	Size Environmental Factor
6.6/11kV Transformer (GM)	≥750kVA	1
	≥500kVA and <750kVA	1
	<500kVA	0.6
20kV Transformer (GM)	≥750kVA	1
	≥500kVA and <750kVA	1
	<500kVA	0.6
33kV Transformer (GM)	33/20kV, >20MVA CMR equivalent	1.6
	33/20kV, >10MVA and ≤20MVA CMR equivalent	1
	33/20kV, ≤10MVA CMR equivalent	0.7
	33/11 or 6.6kV, >20MVA CMR equivalent	1.6
	33/11 or 6.6kV, >10MVA and ≤20MVA CMR equivalent	1
	33/11 or 6.6kV, ≤10MVA CMR equivalent	0.7
66kV Transformer (GM)	66/20kV, >20MVA CMR equivalent	1.6
	66/20kV, >10MVA and ≤20MVA CMR equivalent	1
	66/20kV, ≤10MVA CMR equivalent	0.7
	66/33kV	1.2
	66/11/11kV	1.2
	66/11 or 6.6kV, >20MVA CMR equivalent	1.6

TABLE 230: SIZE ENVIRONMENTAL FACTOR

Asset Category	Size Environmental Factor Criteria	Size Environmental Factor
66kV Transformer (GM)	66/11 or 6.6kV, >10MVA and ≤20MVA CMR equivalent	1
	66/11 or 6.6kV, ≤10MVA CMR equivalent	0.7
132kV Transformer (GM)	132/66kV, ≤60MVA	0.8
	132/66kV, >60MVA	1
	132/33kV, ≤60MVA	0.8
	132/33kV, >60MVA	1
	132/11/11kV	0.8
	132/11kV	0.7
	132/20kV	0.7
	132/20/20kV	0.8
132kV CBs	132kV CB (Air Insulated Busbars)(ID) (GM)	1
	132kV CB (Air Insulated Busbars)(OD) (GM)	1
	132kV CB (Gas Insulated Busbars)(ID) (GM)	2.5
	132kV CB (Gas Insulated Busbars)(OD) (GM)	2.5

The default value for Size Environmental Factor is 1. The default value shall be applied to all those Asset Categories that are not shown in Table 230.

TABLE 231: LOCATION E	NVIRONMENTAL FACTOR

		Proxir	Bunding Factor			
Asset Category	Not Close to Water Course (>120m) or No Oil	Moderately Close to Water Course (between 80m and 120m)	Close to Water Course (between 40m and 80m)	Very Close to Water Course (<40m)	Bunded	Not bunded
EHV UG Cable (Oil)	0.8	1	1.5	2.5	0.5	1
132kV UG Cable (Oil)	0.8	1	1.5	2.5	0.5	1
HV Switchgear (GM) - Primary	0.8	1	1.5	2.5	0.5	1
HV Switchgear (GM) - Distribution	0.8	1	1.5	2.5	0.5	1
EHV Switchgear (GM)	0.8	1	1.5	2.5	0.5	1
132kV CBs	0.8	1	1.5	2.5	0.5	1
HV Transformer (GM)	0.8	1	1.5	2.5	0.5	1
EHV Transformer	0.8	1	1.5	2.5	0.5	1
132kV Transformer	0.8	1	1.5	2.5	0.5	1

The default value for Location Environmental Factor is 1. The default value shall be applied to all those Asset Categories that are not shown in Table 231.

D.4 Network Performance

D.4.1 Reference Network Performance Cost of Failure (LV & HV)

The Reference Network Performance Cost of Failure is based on an assessment of the typical network costs incurred by a failure of the asset as measured through its impact in relation to the number of customers interrupted and the duration of those interruptions. For regulatory purposes, this is captured via the IIS mechanism.

TABLE 232: COSTS USED IN DERIVATION OF NETWORK PERFORMANCE REFERENCE COST OF FAILURE

Parameter	£ (at 2012/13 prices)
Cost of CML	£0.38*
Cost of CI	£15.44*

* Pre-IQI values for IIS incentive rates

For each Asset Category, an assessment is made of:-

- i) the typical number of customers interrupted by a failure; and
- ii) the typical duration of any loss of supply to customers.

This assessment considers two time periods that reflect the initial fault impact and response activity and the subsequent time to fully restore supplies and restore the asset to its pre-fault state, as illustrated in Figure 28.

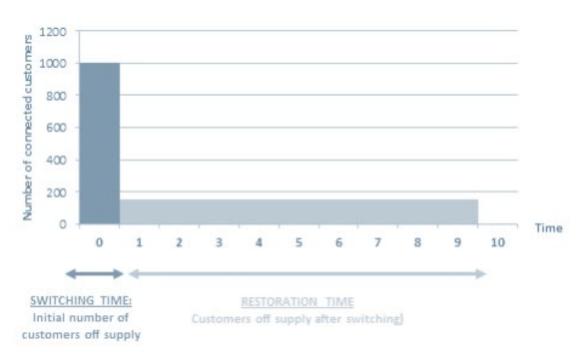


FIGURE 28: NETWORK PERFORMANCE - LV & HV

This considers:-

- the proportion of failures that result in an interruption to supply. This is taken as being the proportion of total failures that are Degraded Failures or Catastrophic Failures. It is assumed that remedial works to address Incipient Failures can be undertaken as planned works and therefore that mitigation measures would be employed to avoid any Network Performance impact;
- ii) the typical number of customers connected to the section of distribution network that is affected by failure of the asset (the Reference Number of Connected Customers);

- iii) the typical number of customers whose supply is restored through immediate switching. This
 is expressed as a proportion of the Reference Number of Connected Customers. A customer's
 supply is only considered as being interrupted where supply is not restored immediately, which
 is consistent with the IIS mechanism;
- iv) the typical time to restore further supplies through manual switching;
- v) the typical number of customers whose supplies are restored following completion of manual switching. This is expressed as a proportion of the Reference Number of connected Customers (and represents the total number of customers whose supplies are restored by immediate switching or manual switching); and
- vi) the typical time to repair the failure (and restore any remaining supplies that were not restored by manual switching).

In evaluating the Reference Network Performance Cost of Failure:-

- i) the number of customers interrupted per failure is multiplied by the relevant cost of a customer interruption (Cost of CI); and
- ii) the number of customer minutes without supply per failure is evaluated; and multiplied by the relevant cost of a customer minute lost (Cost of CML)

to produce a cost per failure for a given Reference Number of Connected Customers. This is shown in EQ. 36.

Reference Network Performance Cost of Failure = [(Cost of CML × 60 × Reference Number of CC × Switching Time × (100% -% of CC restored through immediate switching)) + (Cost of CML × 60 × Reference Number of CC × Restoration Time × (100% – % of CC restored after manual switching)) + (Cost of CI × Reference Number of CC × (100% – % of CC restored through immediate switching))] × % of failures that result in interruption to supply

Where:

EQ. 36

- CC = Connected Customers
- Switching Time and Restoration Time are durations (in hours)

Table 233 summarises the parameters used in evaluating the Reference Network Performance Cost of Failure for each HV and LV Asset Category.

of failures

that result

in

interruption

Reference

Network

Performance

Cost (£)

Typical

repair

time

(hours)

(< 3min) switching switching to supply LV OHL Support 30 0% 5 10% £457 1 0% HV OHL Support -1000 94% 0.5 4 10% 60% Poles HV Transformer (GM) 150 85% 0.5 4 60% 0% HV Switchgear (GM) -1000 94% 0.5 4 60% 60% Distribution HV Switchgear (GM) -94% 4 3500 60% 0.5 60% Primarv LV Circuit Breaker 7 150 85% 1 100% 0% LV Pillar 89% 7 100% 150 1 25% LV UGB 50 25% 89% 1 7 100% LV Board (WM) 89% 7 100% 150 25% 1 HV Sub Cable 800 60% 2 18 100% 40%

TABLE 233: REFERENCE NETWORK PERFORMANCE COST OF FAILURE FOR LV & HV ASSETS Proportion

Proportion of

connected

customers restored

through immediate

Proportion of

customers

restored

After manual

Manual

switching

time

(hours)

D.4.2 Network Performance Factors (LV & HV)

Reference

Number of

Connected

Customers

Asset Category

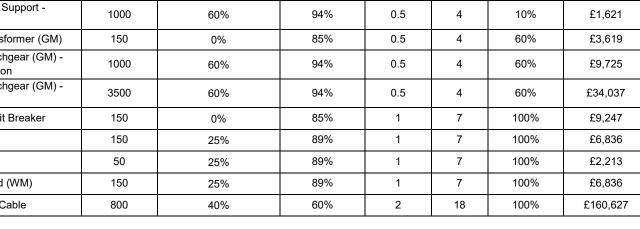
As described in Section 7.6.2.2 the Reference Network Performance Cost of Failure can then be modified on an asset by asset basis as shown in EQ. 37.

Network Performance Cost of Failure

Where:

Customer Factor

This Factor is used to reflect the number of customers impacted by failure of an individual asset, relative to the reference number of customers used in the derivation of the Reference Network Performance Cost of Failure.


This is applied as a direct Factor, i.e. not via a lookup table. For example, if the number of customers used in the derivation of the Reference Network Performance Cost of Failure is 100, but for a specific example it is 80 (or 120), then a modifying factor of 0.8 (or 1.2) would be applied.

Reference No. of Customers

EQ. 37

EQ. 38

EQ. 39

Where a DNO identifies that the customers fed by an individual asset have an exceptionally high demand per customer, then the No. of Customers used in the derivation of EQ. 39 may be derived by applying an adjustment to the actual number of customers fed by the asset as shown in Table 234 which is a repeat of Table 18. This adjustment recognises that for high demand customers the cost of a customer interruption and a customer minute lost may not reflect the value of lost load to the customer. DNOs can elect whether or not to apply this adjustment within their implementation of the Methodology.

Maximum Demand on Asset / Total Number of Customers fed by the Asset (kVA per Customer)	No. of Customers to be used in the derivation of Customer Factor
< 50	1 x actual number of customers fed by the asset
≥ 50 and < 100	25 x actual number of customers fed by the asset
≥ 100 and < 500	100 x actual number of customers fed by the asset
≥ 500 and < 1000	250 x actual number of customers fed by the asset
≥ 1000 and < 2000	500 x actual number of customers fed by the asset
≥ 2000	1000 x actual number of customers fed by the asset

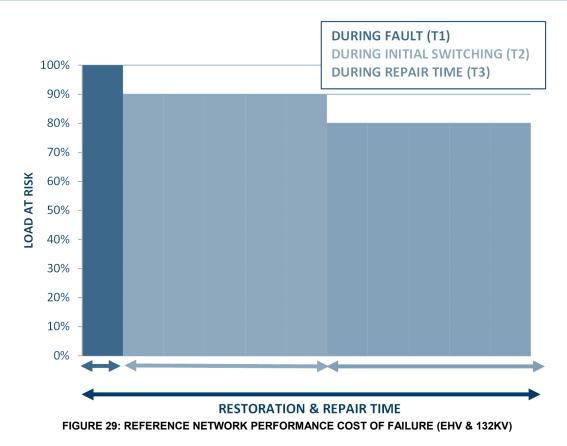
TABLE 234 (TABLE: 18 REPEATED): CUSTOMER NUMBER ADJUSTMENT FOR LV & HV ASSETS WITH HIGH DEMAND CUSTOMERS

The default value for the Customer Factor is 1.

Customer Sensitivity Factor

The Customer Sensitivity Factor is used to reflect circumstances where the customer impact is increased due to customer reliance on electricity (e.g. vulnerable customers). DNOs may use this factor at their discretion in order to modify the Network Performance Consequence Factor.

The default value for the Customer Sensitivity Factor is 1. Individual DNOs are provided with the freedom within the Methodology to apply a Customer Sensitivity Factor, other than the default, to the Network Performance Consequences (LV & HV) for any asset, provided that:-


- i) the individual DNO documents all instances where a Customer Sensitivity Factor different from the default is applied within their individual Network Asset Indices Methodology; and
- ii) The Customer Sensitivity Factor shall not be less than 1, nor greater than 2.

D.4.3 Reference Network Performance Cost of Failure (EHV & 132kV)

For EHV and 132kV assets the Reference Network Performance Cost of Failure is based on an assessment of the amount of Load at Risk during three stages of failure, and the typical duration of each stage:-

- i) During fault (T1): this is the time period between initial circuit protection trip operation and automatic switching to reconfigure the network;
- ii) During initial switching (T2): this is the time period during which further manual network switching is undertaken to reconfigure the network to minimise the risk associated with a further circuit outage; and
- iii) During repair time (T3).

These three stages are illustrated in Figure 29.

The Load at Risk during each stage represents the amount of load that would experience a loss of supply if a further circuit outage were to occur. The probability of the occurrence of such a further coincident outage is considered in the derivation of the Reference Network Performance Cost of Failure.

The proportion of failures that result in an unplanned outage is also considered. This is taken as being the proportion of total failures that are Degraded Failures or Catastrophic Failures. It is assumed that remedial works to address Incipient Failures can be undertaken as planned works and therefore can be scheduled, or mitigation measures employed, to avoid any Network Performance impact of a coincident outage.

The Load at risk, duration, probability of a further coincident outage and proportion of failures resulting in an unplanned outage are used to derive the probable amount of load lost (in MVAh) per failure. The relevant Value of Lost Load (VoLL) is then used to derive a typical Reference Network Performance Cost of Failure for these assets.

Reference Network Performance Cost of Failure = ((Load at risk in T1 × Duration of T1) + (Load at risk in T2 × Duration of T2) + (Load at risk in T3 × Duration of T3)) × % of failures that result in an unplanned outage × Probability of further coincident outage × VoLL

EQ. 40

The value of VoLL adopted in this instance is £18,143 (Para 4.11 of Ofgem's document titled "Strategy decision for the RIIO-ED1 electricity distribution price control - Reliability and safety" quotes the link between the IIS CI and CML setting for RIIO-ED1 to the VoLL set in RIIO-T1, of £16,000. This has been inflated to 2012/13 prices).

Typical values of Load at Risk have been used, for each Asset Category in deriving the Reference Network Performance Cost of Failure. These are based on consideration of:-

- typical values for the maximum demand that would normally be supplied from the affected section of network; and
- the proportion of the maximum demand that would be at risk of loss of supply, should a further coincident outage occur, during each stage (i.e. periods T1, T2 and T3)

such that:

```
Load at risk in T1 = Maximum Demand * % of maximum demand at risk during T1;
Load at risk in T2 = Maximum Demand * % of maximum demand at risk during T2;
Load at risk in T3 = Maximum Demand * % of maximum demand at risk during T3
```

EQ. 43

In this way, the Reference Network Performance Cost of Failure represents costs associated with a given level of maximum demand. This is representative of networks that are secure for a first circuit outage.

For linear assets (Cables and OHL), the maximum demand that is used to derive the reference costs is determined by applying a likely utilisation to a typical circuit rating for circuits of that voltage.

For discrete plant assets, the load at risk is more quantifiable and therefore the maximum demand that is used to derive the reference costs is based on the rating of the asset (in the case of transformers) or the board at the substation in the case of switchgear (it is assumed half of the switchboard would be out of commission for the catastrophic failure of a circuit breaker).

Table 235 shows the values of Reference Network Performance Cost of Failure that shall be used for EHV and 132kV assets. This table also shows the maximum demand used to derive these reference costs. The Load Factor that is applied in the calculation of Network Performance Consequences shall be calculated using these maximum demand values.

Asset Category	ABLE 235: REFERE Maximum Demand Used to Derive	Maximum)	Probability of a	Proportion of failures that result in an	Reference Cost for Assets in
, local category	Reference Cost (MVA)	During T1 period	During T2 period	During T3 period	T1	T2	Т3	coincident fault per hr	in an unplanned outage	Secure Networks (£)
33kV Pole	12	100%	100%	80%	0	3	5	0.050%	10%	£76
66kV Pole	24	100%	100%	80%	0	3	5	0.050%	10%	£152
33kV Tower	12	100%	100%	80%	0	3	24	0.050%	20%	£483
66kV Tower	24	100%	100%	80%	0	3	36	0.050%	20%	£1,385
132kV Tower	60	100%	100%	80%	0	3	36	0.050%	20%	£3,462
33kV Fittings	12	100%	100%	80%	0	3	9	0.050%	20%	£222
66kV Fittings	24	100%	100%	80%	0	3	9	0.050%	20%	£444
132kV Fittings	60	100%	100%	80%	0	3	9	0.050%	20%	£1,110
33kV OHL (Tower Line) Conductor	12	100%	100%	80%	0	3	9	0.050%	100%	£1,110
66kV OHL Conductor	24	100%	100%	80%	0	3	9	0.050%	100%	£2,221
132kV OHL (Tower Line) Conductor	60	100%	100%	80%	0	3	9	0.050%	100%	£5,552
33kV UG Cable (Non Pressurised)	12	100%	100%	80%	0	3	30	0.050%	100%	£2,939
33kV UG Cable (Oil)	12	100%	100%	80%	0	3	30	0.050%	0.1%	£3
33kV UG Cable (Gas)	12	100%	100%	80%	0	3	30	0.050%	1%	£29
66kV UG Cable (Non Pressurised)	24	100%	100%	80%	0	3	30	0.050%	100%	£5,878
66kV UG Cable (Oil)	24	100%	100%	80%	0	3	30	0.050%	0.1%	£6
66kV UG Cable (Gas)	24	100%	100%	80%	0	3	30	0.050%	1%	£59
132kV UG Cable (Non Pressurised)	60	100%	100%	80%	0	3	30	0.050%	100%	£14,696
132kV UG Cable (Oil)	60	100%	100%	80%	0	3	30	0.050%	0.1%	£15
132kV UG Cable (Gas)	60	100%	100%	80%	0	3	30	0.050%	1%	£147
EHV Sub Cable	12	100%	100%	80%	0	3	30	0.050%	100%	£2,939
132kV Sub Cable	60	100%	100%	80%	0	3	30	0.050%	100%	£14,696

TABLE 235: REFERENCE NETWORK PERFORMANCE COST OF FAILURE FOR EHV & 132KV ASSETS (SECURE)

Asset Category	Maximum Demand Used to	Load at Risk (MVA) as % of Maximum Demand			Tir	ne (hours)	Probability of a	Proportion of failures that result	Reference Cost for Assets in
	Derive Reference Cost (MVA)	During T1 period	During T2 period	During T3 period	T1	T2	Т3	coincident fault per hr	in an unplanned outage	Secure Networks (£)
33kV CB (Air Insulated Busbars)(ID) (GM)	30	100%	100%	80%	0	2	200	0.050%	55%	£24,248
33kV CB (Air Insulated Busbars)(OD) (GM)	30	100%	100%	80%	0	2	100	0.050%	55%	£12,274
33kV CB (Gas Insulated Busbars)(ID) (GM)	30	100%	100%	80%	0	2	200	0.050%	55%	£24,248
33kV CB (Gas Insulated Busbars)(OD) (GM)	30	100%	100%	80%	0	2	100	0.050%	55%	£12,274
33kV Switch (GM)	30	100%	100%	80%	0	2	100	0.050%	55%	£12,274
33kV RMU	30	100%	100%	80%	0	2	100	0.050%	55%	£12,274
66kV CB (Air Insulated Busbars)(ID) (GM)	30	100%	100%	80%	0	2	200	0.050%	55%	£24,248
66kV CB (Air Insulated Busbars)(OD) (GM)	30	100%	100%	80%	0	2	100	0.050%	55%	£12,274
66kV CB (Gas Insulated Busbars)(ID) (GM)	30	100%	100%	80%	0	2	200	0.050%	55%	£24,248
66kV CB (Gas Insulated Busbars)(OD) (GM)	30	100%	100%	80%	0	2	100	0.050%	55%	£12,274
132kV CB (Air Insulated Busbars)(ID) (GM)	80	100%	100%	80%	0	1	400	0.050%	55%	£128,126
132kV CB (Air Insulated Busbars)(OD) (GM)	80	100%	100%	80%	0	1	100	0.050%	55%	£32,331
132kV CB (Gas Insulated Busbars)(ID) (GM)	80	100%	100%	80%	0	1	400	0.050%	55%	£128,126
132kV CB (Gas Insulated Busbars)(OD) (GM)	80	100%	100%	80%	0	1	100	0.050%	55%	£32,331
33kV Transformer (GM)	15	100%	100%	80%	0	2	400	0.050%	55%	£24,098
66kV Transformer	15	100%	100%	80%	0	2	400	0.050%	55%	£24,098
132kV Transformer	60	100%	100%	80%	0	1	800	0.050%	55%	£191,889

D.4.4 Network Performance Factors (EHV & 132kV)

As described in Section 7.6.3.2 the Network Performance CoF is derived on an asset by asset basis as shown in EQ. 41.

Network Performance Consequences of Failure = Reference Network Performance Cost of Failure \times Load Factor \times Network Type Factor

EQ. 41

Load Factor

This Factor allows for the Network Performance CoF to reflect the actual load at risk associated with the failure of the asset under consideration, relative to the value of maximum demand used to create the reference value.

The Load Factor is determined as shown in EQ. 42 (i.e. not via a lookup table).

Load Factor = Actual Load at Risk Associated with the Failure of the Asset Under Consideration Maximum Demand Used To Derive Reference Network Performance Cost of Failure

EQ. 42

For example, if the Reference Network Performance Cost of Failure has been derived using a reference maximum demand of 12MVA, but for a specific asset the actual load at risk was 6MVA then a Load Factor of 0.5 would be applied.

The values of maximum demand used in derivation of the Reference Network Performance Cost of Failure can be found in Table 235 in Appendix D.

Where the actual load is not known, the default value for Load Factor is dependent on the security of supply of the associated network.

A default Load Factor of 0.5 shall be applied where an individual asset is located in a network that is not secure for a first circuit outage event that would result from failure of the asset (i.e. the network would be considered not secure if the load normally supplied by the asset would be interrupted and not restored automatically, in such an event).

A default Load Factor of 1 shall apply to assets in secure networks or where the security of the network is unknown.

Network Type Factor

This Network Performance CoF is derived on an asset by asset basis by the application of a Network Type Factor to take account of the security of supply afforded by the topology of the network in which the individual asset is located.

A Network Type Factor of 2.5 shall be applied where an individual asset is located in a network that is not secure for a first circuit outage event that would result from failure of the asset (i.e. the network would be considered not secure if the load normally supplied by the asset would be interrupted and not restored automatically, in such an event).

A Network Type Factor of 1 shall apply to assets in secure networks.

The default value for Network Type Factor is 1.

APPENDIX E WEIGHTING FACTORS FOR APPLICATION TO RISK MATRICES

E.1 Typical Weighting Factors for Criticality Index Bands

TABLE 236: TYPICAL COF WEIGHTINGS FOR CRITICALITY INDEX BANDS FOR USE WITH RISK MATRICES

Asset Register Category	Typical COF V		Typical COF Weightings for Each Criticality Index Band (£ at 12/13 prices)							
			1							
	C1	C2	C3	C4						
LV Poles	1526.7	2181	3271.5	5452.5						
LV Circuit Breaker	14492.1	20703	31054.5	51757.5						
LV Pillar (ID)	13736.1	19623	29434.5	49057.5						
LV Pillar (OD at Substation)	14028	20040	30060	50100						
LV Pillar (OD not at a Substation)	12748.4	18212	27318	45530						
LV Board (WM)	14996.8	21424	32136	53560						
LV UGB	9549.4	13642	20463	34105						
LV Board (X-type Network) (WM)	15818.6	22598	33897	56495						
6.6/11kV Poles	2426.9	3467	5200.5	8667.5						
20kV Poles	2649.5	3785	5677.5	9462.5						
HV Sub Cable	220584.7	315121	472681.5	787802.5						
6.6/11kV CB (GM) Primary	43557.5	62225	93337.5	155562.5						
6.6/11kV CB (GM) Secondary	14610.4	20872	31308	52180						
6.6/11kV Switch (GM)	13624.8	19464	29196	48660						
6.6/11kV RMU	16289	23270	34905	58175						
6.6/11kV X-type RMU	18314.1	26163	39244.5	65407.5						
20kV CB (GM) Primary	44674.7	63821	95731.5	159552.5						
20kV CB (GM) Secondary	14759.5	21085	31627.5	52712.5						
20kV Switch (GM)	14112.7	20161	30241.5	50402.5						
20kV RMU	16396.1	23423	35134.5	58557.5						
6.6/11kV Transformer (GM)	13153.7	18791	28186.5	46977.5						
20kV Transformer (GM)	13904.1	19863	29794.5	49657.5						
33kV Pole	1668.1	2383	3574.5	5957.5						
66kV Pole	2450	3500	5250	8750						
33kV OHL (Tower Line) Conductor	12135.9	17337	26005.5	43342.5						
33kV Tower	4613	6590	9885	16475						
33kV Fittings	1278.9	1827	2740.5	4567.5						
66kV OHL (Tower Line) Conductor	16296.7	23281	34921.5	58202.5						
66kV Tower	8680.7	12401	18601.5	31002.5						
66kV Fittings	1472.1	2103	3154.5	5257.5						
33kV UG Cable (Non Pressurised)	20920.2	29886	44829	74715						
33kV UG Cable (Oil)	3507.7	5011	7516.5	12527.5						
33kV UG Cable (Gas)	238	340	510	850						
66kV UG Cable (Non Pressurised)	41843.2	59776	89664	149440						
66kV UG Cable (Oil)	3515.4	5022	7533	12555						
66kV UG Cable (Gas)	376.6	538	807	1345						
EHV Sub Cable	170408.7	243441	365161.5	608602.5						
33kV CB (Air Insulated Busbars)(ID) (GM)	41855.8	59794	89691	149485						
33kV CB (Air Insulated Busbars)(OD) (GM)	35429.1	50613	75919.5	126532.5						
33kV CB (Gas Insulated Busbars)(ID)(GM)	46208.4	66012	99018	165030						
33kV CB (Gas Insulated Busbars)(OD)(GM)	37826.6	54038	81057	135095						
33kV Switch (GM)	30993.2	44276	66414	110690						
33kV RMU	39786.6	56838	85257	142095						
66kV CB (Air Insulated Busbars)(ID) (GM)	50255.8	71794	107691	179485						
66kV CB (Air Insulated Busbars)(OD) (GM)	51967.3	74239	111358.5	185597.5						
66kV CB (Gas Insulated Busbars)(ID)(GM)	63800.8	91144	136716	227860						
66kV CB (Gas Insulated Busbars)(OD)(GM)	55419	79170	118755	197925						
33kV Transformer (GM)	92441.3	132059	198088.5	330147.5						
66kV Transformer (GM)	119883.4	171262	256893	428155						
132kV OHL (Tower Line) Conductor	16769.2	23956	35934	59890						
132kV Tower	11286.1	16123	24184.5	40307.5						
132kV Fittings	2051	2930	4395	7325						

Asset Register Category	Typical COF Weightings for Each Criticality Index Band (£ at 12/13 prices)						
	C1	C2	C3	C4			
132kV UG Cable (Non Pressurised)	74575.9	106537	159805.5	266342.5			
132kV UG Cable (Oil)	4419.1	6313	9469.5	15782.5			
132kV UG Cable (Gas)	618.1	883	1324.5	2207.5			
132kV Sub Cable	292388.6	417698	626547	1044245			
132kV CB (Air Insulated Busbars)(ID) (GM)	165472.3	236389	354583.5	590972.5			
132kV CB (Air Insulated Busbars)(OD) (GM)	73411.8	104874	157311	262185			
132kV CB (Gas Insulated Busbars)(ID) (GM)	216631.1	309473	464209.5	773682.5			
132kV CB (Gas Insulated Busbars)(OD) (GM)	149574.6	213678	320517	534195			
132kV Transformer (GM)	330400.7	472001	708001.5	1180002.5			

E.2 Weighting Factors for Determination of In-Year Risk

TABLE 237: TYPICAL POF WEIGHTINGS FOR HEALTH INDICES BANDS FOR USE IN THE CALCULATION OF IN-YEAR RISK FROM RISK MATRICES

Asset Register Category	Typical In-Year POF Weightings for Each Health Index Band					
	H1	H2	H3	H4	H5	
LV Poles	0.008123	0.009326	0.021383	0.03463	0.061186	
LV Circuit Breaker	0.001169	0.001342	0.003076	0.004982	0.008802	
LV Pillar (ID)	0.001311	0.001505	0.003451	0.005589	0.009876	
LV Pillar (OD at Substation)	0.001311	0.001505	0.003451	0.005589	0.009876	
LV Pillar (OD not at a Substation)	0.001311	0.001505	0.003451	0.005589	0.009876	
LV Board (WM)	0.001967	0.002258	0.005177	0.008384	0.014813	
LV UGB	0.002195	0.00252	0.005777	0.009356	0.016531	
LV Board (X-type Network) (WM)	0.001967	0.002258	0.005177	0.008384	0.014813	
6.6/11kV Poles	0.008123	0.009326	0.021383	0.03463	0.061186	
20kV Poles	0.008123	0.009326	0.021383	0.03463	0.061186	
HV Sub Cable	0.005757	0.00661	0.015156	0.024545	0.043367	
6.6/11kV CB (GM) Primary	0.001482	0.001702	0.003901	0.006318	0.011164	
6.6/11kV CB (GM) Secondary	0.00191	0.002192	0.005027	0.008141	0.014384	
6.6/11kV Switch (GM)	0.00191	0.002192	0.005027	0.008141	0.014384	
6.6/11kV RMU	0.00191	0.002192	0.005027	0.008141	0.014384	
6.6/11kV X-type RMU	0.00191	0.002192	0.005027	0.008141	0.014384	
20kV CB (GM) Primary	0.001482	0.001702	0.003901	0.006318	0.011164	
20kV CB (GM) Secondary	0.00191	0.002192	0.005027	0.008141	0.014384	
20kV Switch (GM)	0.00191	0.002192	0.005027	0.008141	0.014384	
20kV RMU	0.00191	0.002192	0.005027	0.008141	0.014384	
6.6/11kV Transformer (GM)	0.002223	0.002552	0.005852	0.009478	0.016746	
20kV Transformer (GM)	0.002223	0.002552	0.005852	0.009478	0.016746	
33kV Pole	0.008123	0.009326	0.021383	0.03463	0.061186	
66kV Pole	0.008123	0.009326	0.021383	0.03463	0.061186	
33kV OHL (Tower Line) Conductor	0.00228	0.002618	0.006002	0.009721	0.017175	
33kV Tower	0.015533	0.017834	0.04089	0.066222	0.117004	
33kV Fittings	0.002736	0.003141	0.007203	0.011665	0.02061	
66kV OHL (Tower Line) Conductor	0.00228	0.002618	0.006002	0.009721	0.017175	
66kV Tower	0.015533	0.017834	0.04089	0.066222	0.117004	
66kV Fittings	0.002736	0.003141	0.007203	0.011665	0.02061	
33kV UG Cable (Non Pressurised)	0.018753	0.021532	0.049368	0.079952	0.141264	
33kV UG Cable (Oil)	0.596913	0.685357	1.571374	2.544859	4.496404	
33kV UG Cable (Gas)	1.283546	1.473727	3.378934	5.472225	9.668642	
66kV UG Cable (Non Pressurised)	0.018753	0.021532	0.049368	0.079952	0.141264	
66kV UG Cable (Oil)	0.596913	0.685357	1.571374	2.544859	4.496404	
66kV UG Cable (Gas)	1.283546	1.473727	3.378934	5.472225	9.668642	
EHV Sub Cable	0.005757	0.00661	0.015156	0.024545	0.043367	
33kV CB (Air Insulated Busbars)(ID) (GM)	0.006356	0.007297	0.016731	0.027096	0.047875	

Asset Register Category	Typical In-Year POF Weightings for Each Health Index Band					
	H1	H2	H3	H4	H5	
33kV CB (Air Insulated Busbars)(OD) (GM)	0.006356	0.007297	0.016731	0.027096	0.047875	
33kV CB (Gas Insulated Busbars)(ID)(GM)	0.006356	0.007297	0.016731	0.027096	0.047875	
33kV CB (Gas Insulated Busbars)(OD)(GM)	0.006356	0.007297	0.016731	0.027096	0.047875	
33kV Switch (GM)	0.006356	0.007297	0.016731	0.027096	0.047875	
33kV RMU	0.006356	0.007297	0.016731	0.027096	0.047875	
66kV CB (Air Insulated Busbars)(ID) (GM)	0.014592	0.016754	0.038414	0.062212	0.10992	
66kV CB (Air Insulated Busbars)(OD) (GM)	0.014592	0.016754	0.038414	0.062212	0.10992	
66kV CB (Gas Insulated Busbars)(ID)(GM)	0.014592	0.016754	0.038414	0.062212	0.10992	
66kV CB (Gas Insulated Busbars)(OD)(GM)	0.014592	0.016754	0.038414	0.062212	0.10992	
33kV Transformer (GM)	0.012939	0.014856	0.034062	0.055165	0.097468	
66kV Transformer (GM)	0.012939	0.014856	0.034062	0.055165	0.097468	
132kV OHL (Tower Line) Conductor	0.00228	0.002618	0.006002	0.009721	0.017175	
132kV Tower	0.015533	0.017834	0.04089	0.066222	0.117004	
132kV Fittings	0.002736	0.003141	0.007203	0.011665	0.02061	
132kV UG Cable (Non Pressurised)	0.018753	0.021532	0.049368	0.079952	0.141264	
132kV UG Cable (Oil)	0.596913	0.685357	1.571374	2.544859	4.496404	
132kV UG Cable (Gas)	1.283546	1.473727	3.378934	5.472225	9.668642	
132kV Sub Cable	0.005757	0.00661	0.015156	0.024545	0.043367	
132kV CB (Air Insulated Busbars)(ID) (GM)	0.012284	0.014104	0.032337	0.05237	0.09253	
132kV CB (Air Insulated Busbars)(OD) (GM)	0.012284	0.014104	0.032337	0.05237	0.09253	
132kV CB (Gas Insulated Busbars)(ID) (GM)	0.012284	0.014104	0.032337	0.05237	0.09253	
132kV CB (Gas Insulated Busbars)(OD) (GM)	0.012284	0.014104	0.032337	0.05237	0.09253	
132kV Transformer (GM)	0.012939	0.014856	0.034062	0.055165	0.097468	

TABLE 238: RISK MATRIX WEIGHTINGS - MONETISED IN-YEAR RISK

Asset Register Category	Criticality Index	In Year Monetised Risk Weighting (£ at 12/13 prices) For Eac Health Index Band					
	Band	H1	H2	H3	H4	H5	
LV Poles	C1	12	14	33	53	93	
	C2	18	20	47	76	133	
	C3	27	31	70	113	200	
	C4	44	51	117	189	334	
LV Circuit Breaker	C1	17	19	45	72	128	
	C2	24	28	64	103	182	
	C3	36	42	96	155	273	
	C4	61	69	159	258	456	
LV Pillar (ID)	C1	18	21	47	77	136	
	C2	26	30	68	110	194	
	C3	39	44	102	165	291	
	C4	64	74	169	274	484	
LV Pillar (OD at Substation)	C1	18	21	48	78	139	
	C2	26	30	69	112	198	
	C3	39	45	104	168	297	
	C4	66	75	173	280	495	
LV Pillar (OD not at a Substation)	C1	17	19	44	71	126	
	C2	24	27	63	102	180	
	C3	36	41	94	153	270	
	C4	60	69	157	254	450	
LV Board (WM)	C1	29	34	78	126	222	
	C2	42	48	111	180	317	
	C3	63	73	166	269	476	
	C4	105	121	277	449	793	
LV UGB	C1	21	24	55	89	158	
	C2	30	34	79	128	226	
	C3	45	52	118	191	338	
	C4	75	86	197	319	564	

Asset Register Category	Criticality Index	In Year Moi		Neighting (£ alth Index Ba		es) For Each
	Band	H1	H2	H3	H4	H5
LV Board (X-type Network) (WM)	C1	31	36	82	133	234
	C2	44	51	117	189	335
	C3	67	77	175	284	502
	C4	111	128	292	474	837
6.6/11kV Poles	C1	20	23	52	84	148
	C2	28	32	74	120	212
	C3	42	48	111	180	318
	C4	70	81	185	300	530
20kV Poles	C1	22	25	57	92	162
	C2	31	35	81	131	232
	C3	46	53	121	197	347
	C4	77	88	202	328	579
HV Sub Cable	C1	1270	1458	3343	5414	9566
	C2	1814	2083	4776	7735	13666
	C3	2721	3124	7164	11602	20499
	C4	4535	5207	11940	19337	34165
6.6/11kV CB (GM) Primary	C1	65	74	170	275	486
	C2	92	106	243	393	695
	C3	138	159	364	590	1042
	C4	231	265	607	983	1737
6.6/11kV CB (GM) Secondary	C1	28	32	73	119	210
	C2	40	46	105	170	300
	C3	60	69	157	255	450
	C4	100	114	262	425	751
6.6/11kV Switch (GM)	C1	26	30	68	111	196
	C2	37	43	98	158	280
	C3	56	64	147	238	420
	C4	93	107	245	396	700
6.6/11kV RMU	C1	31	36	82	133	234
	C2	44	51	117	189	335
	C3	67	77	175	284	502
	C4	111	128	292	474	837
6.6/11kV X-type RMU	C1	35	40	92	149	263
	C2	50	57	132	213	376
	C3	75	86	197	319	564
	C4	125	143	329	532	941
20kV CB (GM) Primary	C1	66	76	174	282	499
	C2	95	109	249	403	712
	C3	142	163	373	605	1069
	C4	236	272	622	1008	1781
20kV CB (GM) Secondary	C1	28	32	74	120	212
	C2	40	46	106	172	303
	C3	60	69	159	257	455
	C4	101	116	265	429	758
20kV Switch (GM)	C1	27	31	71	115	203
	C2	39	44	101	164	290
	C3	58	66	152	246	435
	C4	96	110	253	410	725
20kV RMU	C1	31	36	82	133	236
	C2	45	51	118	191	337
	C3	67	77	177	286	505
	C4	112	128	294	477	842
6.6/11kV Transformer (GM)	C1	29	34	77	125	220
	C2	42	48	110	178	315
	C3	63	72	165	267	472
	C4	104	120	275	445	787

Asset Register Category	Criticality Index	In Year Mo		Weighting (£ alth Index Ba		es) For Each
	Band	H1	H2	H3	H4	H5
20kV Transformer (GM)	C1	31	35	81	132	233
	C2	44	51	116	188	333
	C3	66	76	174	282	499
	C4	110	127	291	471	832
33kV Pole	C1	14	16	36	58	102
	C2	19	22	51	83	146
	C3	29	33	76	124	219
	C4	48	56	127	206	365
66kV Pole	C1	20	23	52	85	150
	C2	28	33	75	121	214
	C3	43	49	112	182	321
	C4	71	82	187	303	535
33kV OHL (Tower Line) Conductor	C1	28	32	73	118	208
	C2	40	45	104	169	298
	C3	59	68	156	253	447
	C4	99	113	260	421	744
33kV Tower	C1	72	82	189	305	540
	C2	102	118	269	436	771
	C3	154	176	404	655	1157
	C4	256	294	674	1091	1928
33kV Fittings	C1	3	4	9	15	26
	C2	5	6	13	21	38
	C3	7	9	20	32	56
	C4	12	14	33	53	94
66kV OHL (Tower Line) Conductor	C1	37	43	98	158	280
	C2	53	61	140	226	400
	C3	80	91	210	339	600
	C4	133	152	349	566	1000
66kV Tower	C1	135	155	355	575	1016
	C2	193	221	507	821	1451
	C3	289	332	761	1232	2176
	C4	482	553	1268	2053	3627
66kV Fittings	C1	4	5	11	17	30
	C2	6	7	15	25	43
	C3	9	10	23	37	65
221// LIC Cable (Nen Pressuriesd)	C4	14	17	38	61	108
33kV UG Cable (Non Pressurised)	C1	392	450	1033	1673	2955
	C2	560	644	1475	2389	4222
	C3 C4	841	965 1600	2213	3584 5974	6333
33kV UG Cable (Oil)		1401	1609	3689		10555
	C1 C2	2094 2991	2404 3434	5512 7874	8927 12752	<u>15772</u> 22531
	C3	4487	5151	11811	12752	33797
	C3	7478		19685	31881	56329
33kV UG Cable (Gas)	C4 C1	305	8586 351	804	1302	2301
	C1 C2	436	501	804 1149	1302	3287
	C3	436 655	752	1723	2791	4931
	C4	1091	1253	2872	4651	8218
66kV UG Cable (Non Pressurised)	C4 C1	785	901	2066	3345	5911
	C2	1121	1287	2066	4779	8444
	C2 C3					
	C3	1681	1931	4427	7169	12666
66kV UG Cable (Oil)		2802	3218	7378	11948	21110
	C1 C2	2098 2998	2409 3442	5524 7891	8946 12780	15807 22581
	C3		5163	11837	12780	
	6.5	4497	1 3103	1 11037	19170	33871

Asset Register Category	Criticality Index	In Year Mor		Neighting (£ alth Index Ba		es) For Each
	Band	H1	H2	H3	H4	H5
66kV UG Cable (Gas)	C1	483	555	1273	2061	3641
	C2	691	793	1818	2944	5202
	C3	1036	1189	2727	4416	7803
	C4	1726	1982	4545	7360	13004
EHV Sub Cable	C1	981	1126	2583	4183	7390
	C2	1401	1609	3690	5975	10557
	C3	2102	2414	5534	8963	15836
	C4	3504	4023	9224	14938	26393
33kV CB (Air Insulated Busbars)(ID) (GM)	C1	266	305	700	1134	2004
	C2	380	436	1000	1620	2863
	C3	570	654	1501	2430	4294
	C4	950	1091	2501	4050	7157
33kV CB (Air Insulated Busbars)(OD) (GM)	C1	225	259	593	960	1696
	C2	322	369	847	1371	2423
	C3	483	554	1270	2057	3635
	C4	804	923	2117	3429	6058
33kV CB (Gas Insulated Busbars)(ID)(GM)	C1	294	337	773	1252	2212
	C2	420	482	1104	1789	3160
	C3	629	723	1657	2683	4740
	C4	1049	1204	2761	4472	7901
33kV CB (Gas Insulated	C1	240	276	633	1025	1811
Busbars)(OD)(GM)	C2	343	394	904	1464	2587
	C3	515	591	1356	2196	3881
	C4	859	986	2260	3661	6468
33kV Switch (GM)	C1	197	226	519	840	1484
	C2	281	323	741	1200	2120
	C3	422	485	1111	1800	3180
	C4	704	808	1852	2999	5299
33kV RMU	C1	253	290	666	1078	1905
	C2	361	415	951	1540	2721
	C3	542	622	1426	2310	4082
	C4	903	1037	2377	3850	6803
66kV CB (Air Insulated Busbars)(ID) (GM)	C1	733	842	1931	3127	5524
	C2	1048	1203	2758	4466	7892
	C3	1571	1804	4137	6700	11837
	C4	2619	3007	6895	11166	19729
66kV CB (Air Insulated Busbars)(OD) (GM)	C1	758	871	1996	3233	5712
	C2	1083	1244	2852	4619	8160
	C3	1625	1866	4278	6928	12241
	C4	2708	3110	7130	11546	20401
66kV CB (Gas Insulated Busbars)(ID)(GM)	C1	931	1069	2451	3969	7013
	C2	1330	1527	3501	5670	10019
	C3	1995	2291	5252	8505	15028
	C4	3325	3818	8753	14176	25046
66kV CB (Gas Insulated	C1	809	928	2129	3448	6092
Busbars)(OD)(GM)	C2	1155	1326	3041	4925	8702
	C3	1733	1990	4562	7388	13054
	C4	2888	3316	7603	12313	21756
33kV Transformer (GM)	C1	1196	1373	3149	5100	9010
	C2	1709	1962	4498	7285	12872
	C3	2563	2943	6747	10928	19307
	C4	4272	4905	11245	18213	32179
66kV Transformer (GM)	C1	1551	1781	4083	6613	11685
	C2	2216	2544	5834	9448	16693
	C3	3324	3816	8750	14172	25039
	C4	5540	6361	14584	23619	41731

Asset Register Category	Criticality Index	In Year Mor		Veighting (£ alth Index Ba		es) For Each
	Band	H1	H2	H3	H4	H5
132kV OHL (Tower Line) Conductor	C1	38	44	101	163	288
	C2	55	63	144	233	411
	C3	82	94	216	349	617
	C4	137	157	359	582	1029
132kV Tower	C1	175	201	461	747	1321
	C2	250	288	659	1068	1886
	C3	376	431	989	1602	2830
	C4	626	719	1648	2669	4716
132kV Fittings	C1	6	6	15	2005	42
	C2	8	9	21	34	60
	C3	12	14	32	51	91
	C4	20	23	53	85	151
132kV UG Cable (Non Pressurised)	C4 C1	1399	1606	3682	5962	10535
	C1 C2	1998	2294	5260	8518	15050
	C2 C3	2997	3441	5260 7889		
			2		12777	22575
132kV UG Cable (Oil)	C4	4995	5735	13149	21295	37625
	C1	2638	3029	6944	11246	19870
	C2	3768	4327	9920	16066	28386
	C3	5652	6490	14880	24099	42579
	C4	9421	10817	24800	40164	70964
132kV UG Cable (Gas)	C1	793	911	2089	3382	5976
	C2	1133	1301	2984	4832	8537
	C3	1700	1952	4475	7248	12806
	C4	2833	3253	7459	12080	21344
132kV Sub Cable	C1	1683	1933	4431	7177	12680
	C2	2405	2761	6331	10252	18114
	C3	3607	4141	9496	15379	27171
	C4	6012	6902	15827	25631	45286
132kV CB (Air Insulated Busbars)(ID) (GM)	C1	2033	2334	5351	8666	15311
	C2	2904	3334	7644	12380	21873
	C3	4356	5001	11466	18570	32810
	C4	7260	8335	19110	30949	54683
132kV CB (Air Insulated Busbars)(OD)	C1	902	1035	2374	3845	6793
(GM)	C2	1288	1479	3391	5492	9704
	C3	1932	2219	5087	8238	14556
	C4	3221	3698	8478	13731	24260
132kV CB (Gas Insulated Busbars)(ID)	C1	2661	3055	7005	11345	20045
(GM)	C2	3802	4365	10007	16207	28636
	C3	5702	6547	15011	24311	42953
	C4	9504	10912	25019	40518	71589
132kV CB (Gas Insulated Busbars)(OD)	C1	1837	2110	4837	7833	13840
(GM)	C2	2625	3014	6910	11190	19772
	C3	3937	4521	10365	16785	29657
	C4	6562	7534	17274	27976	49429
132kV Transformer (GM)	C1	4275	4908	11254	18227	32203
	C2	6107	7012	16077	26038	46005
	C3	9161	10518	24116	39057	69007
	C4	15268	17530	40193	65095	115012

E.3 Weighting Factors for Determination of Long Term Risk

TABLE 239: TYPICAL FORECAST AGEING RATES FOR USE IN DETERMINATION OF CUMULATIVE DISCOUNTED POF WEIGHTINGS FOR RISK MATRICES

Asset Register Category	Forecast	Comments
	Ageing Rate	
LV Poles	0.04359810	From Normal Expected Life for Wood Pole subdivision
LV Circuit Breaker	0.03996492	
LV Pillar (ID)	0.03996492	
LV Pillar (OD at Substation)	0.03996492	
LV Pillar (OD not at a Substation)	0.03996492	
LV Board (WM)	0.03996492	
LV UGB	0.04359810	
LV Board (X-type Network) (WM)	0.03996492	
6.6/11kV Poles	0.04359810	From Normal Expected Life for Wood Pole subdivision
20kV Poles	0.04359810	From Normal Expected Life for Wood Pole subdivision
HV Sub Cable	0.03996492	
6.6/11kV CB (GM) Primary	0.04359810	
6.6/11kV CB (GM) Secondary	0.04359810	
6.6/11kV Switch (GM)	0.04359810	
6.6/11kV RMU	0.04359810	
6.6/11kV X-type RMU	0.04359810	
20kV CB (GM) Primary	0.04359810	
20kV CB (GM) Secondary	0.04359810	
20kV Switch (GM)	0.04359810	
20kV RMU	0.04359810	
6.6/11kV Transformer (GM)	0.03996492	
20kV Transformer (GM)	0.03996492	
33kV Pole	0.04359810	From Normal Expected Life for Wood Pole subdivision
66kV Pole	0.04359810	From Normal Expected Life for Wood Pole subdivision
33kV OHL (Tower Line) Conductor	0.04359810	From Normal Expected Life for ACSR - greased subdivision
33kV Tower	0.02997369	From Normal Expected Life for Steelwork subcomponent
33kV Fittings	0.05994738	
66kV OHL (Tower Line) Conductor	0.04359810	From Normal Expected Life for ACSR - greased subdivision
66kV Tower	0.02997369	From Normal Expected Life for Steelwork subcomponent
66kV Fittings	0.05994738	
33kV UG Cable (Non Pressurised)	0.02397895	
33kV UG Cable (Oil)	0.03197194	From Normal Expected Life for Aluminium Sheath - Copper Conductor subdivision
33kV UG Cable (Gas)	0.03425565	From Normal Expected Life for Aluminium Sheath - Copper Conductor subdivision
66kV UG Cable (Non Pressurised)	0.02397895	
66kV UG Cable (Oil)	0.03197194	From Normal Expected Life for Aluminium Sheath - Copper Conductor subdivision
66kV UG Cable (Gas)	0.03425565	From Normal Expected Life for Aluminium Sheath - Copper Conductor subdivision
EHV Sub Cable	0.03996492	
33kV CB (Air Insulated Busbars)(ID) (GM)	0.03996492	
33kV CB (Air Insulated Busbars)(OD) (GM)	0.04795791	
33kV CB (Gas Insulated Busbars)(ID)(GM)	0.03996492	
33kV CB (Gas Insulated	0.04795791	
Busbars)(OD)(GM)		
33kV Switch (GM)	0.04359810	
33kV RMU	0.04359810	
66kV CB (Air Insulated Busbars)(ID) (GM)	0.04795791	
66kV CB (Air Insulated Busbars)(OD) (GM)	0.04359810	
66kV CB (Gas Insulated Busbars)(ID)(GM)	0.04359810	
66kV CB (Gas Insulated	0.04795791	
Busbars)(OD)(GM)		

Asset Register Category	Forecast Ageing Rate	Comments
33kV Transformer (GM)	0.03996492	From Normal Expected Life for Transformer - Pre 1980
		subcomponent and subdivision
66kV Transformer (GM)	0.03996492	From Normal Expected Life for Transformer - Pre 1980
		subcomponent and subdivision
132kV OHL (Tower Line) Conductor	0.04359810	From Normal Expected Life for ACSR - greased subdivision
132kV Tower	0.02997369	From Normal Expected Life for Steelwork subcomponent
132kV Fittings	0.05994738	
132kV UG Cable (Non Pressurised)	0.02397895	
132kV UG Cable (Oil)	0.03197194	From Normal Expected Life for Aluminium Sheath - Copper Conductor subdivision
132kV UG Cable (Gas)	0.03425565	From Normal Expected Life for Aluminium Sheath - Copper Conductor subdivision
132kV Sub Cable	0.03996492	
132kV CB (Air Insulated Busbars)(ID) (GM)	0.03996492	
132kV CB (Air Insulated Busbars)(OD) (GM)	0.04795791	
132kV CB (Gas Insulated Busbars)(ID) (GM)	0.03996492	
132kV CB (Gas Insulated Busbars)(OD) (GM)	0.04359810	
132kV Transformer (GM)	0.03996492	From Normal Expected Life for Transformer - Pre 1980 subcomponent and subdivision

TABLE 240: TYPICAL CUMULATIVE DISCOUNTED POF WEIGHTINGS FOR HEALTH INDICES BANDS FOR USE IN THE CALCULATION OF LONG TERM RISK FROM RISK MATRICES

Asset Register Category	Typical Cumulative Discounted POF Weightings for Each Health Index Band						
	HI1	HI2	HI3	HI4	HI5		
LV Poles	0.1682	0.744	1.5048	2.2822	3.2534		
LV Circuit Breaker	0.0236	0.0923	0.1905	0.3045	0.4513		
LV Pillar (ID)	0.0265	0.1036	0.2137	0.3417	0.5063		
LV Pillar (OD at Substation)	0.0265	0.1036	0.2137	0.3417	0.5063		
LV Pillar (OD not at a Substation)	0.0265	0.1036	0.2137	0.3417	0.5063		
LV Board (WM)	0.0398	0.1554	0.3206	0.5125	0.7595		
LV UGB	0.0454	0.201	0.4066	0.6166	0.879		
LV Board (X-type Network) (WM)	0.0398	0.1554	0.3206	0.5125	0.7595		
6.6/11kV Poles	0.1682	0.744	1.5048	2.2822	3.2534		
20kV Poles	0.1682	0.744	1.5048	2.2822	3.2534		
HV Sub Cable	0.1164	0.4549	0.9385	1.5004	2.2234		
6.6/11kV CB (GM) Primary	0.0307	0.1358	0.2746	0.4164	0.5936		
6.6/11kV CB (GM) Secondary	0.0395	0.1749	0.3538	0.5365	0.7648		
6.6/11kV Switch (GM)	0.0395	0.1749	0.3538	0.5365	0.7648		
6.6/11kV RMU	0.0395	0.1749	0.3538	0.5365	0.7648		
6.6/11kV X-type RMU	0.0395	0.1749	0.3538	0.5365	0.7648		
20kV CB (GM) Primary	0.0307	0.1358	0.2746	0.4164	0.5936		
20kV CB (GM) Secondary	0.0395	0.1749	0.3538	0.5365	0.7648		
20kV Switch (GM)	0.0395	0.1749	0.3538	0.5365	0.7648		
20kV RMU	0.0395	0.1749	0.3538	0.5365	0.7648		
6.6/11kV Transformer (GM)	0.045	0.1756	0.3624	0.5794	0.8585		
20kV Transformer (GM)	0.045	0.1756	0.3624	0.5794	0.8585		
33kV Pole	0.1682	0.744	1.5048	2.2822	3.2534		
66kV Pole	0.1682	0.744	1.5048	2.2822	3.2534		

Asset Register Category	Typical C		scounted POI alth Index Ba		for Each
	HI1	HI2	HI3	HI4	HI5
33kV OHL (Tower Line) Conductor	0.0472	0.2089	0.4224	0.6406	0.9132
33kV Tower	0.3118	0.8434	1.8135	3.0114	5.1857
33kV Fittings	0.0801	0.4733	0.7308	0.955	1.2238
66kV OHL (Tower Line) Conductor	0.0472	0.2089	0.4224	0.6406	0.9132
66kV Tower	0.3118	0.8434	1.8135	3.0114	5.1857
66kV Fittings	0.0801	0.4733	0.7308	0.955	1.2238
33kV UG Cable (Non Pressurised)	0.3764	0.8315	1.8232	3.0116	5.4204
33kV UG Cable (Oil)	11.9823	34.808	74.2907	123.5784	206.6918
33kV UG Cable (Gas)	25.7656	81.3867	172.1507	286.792	460.7901
66kV UG Cable (Non Pressurised)	0.3764	0.8315	1.8232	3.0116	5.4204
66kV UG Cable (Oil)	11.9823	34.808	74.2907	123.5784	206.6918
66kV UG Cable (Gas)	25.7656	81.3867	172.1507	286.792	460.7901
EHV Sub Cable	0.1164	0.4549	0.9385	1.5004	2.2234
33kV CB (Air Insulated Busbars)(ID) (GM)	0.1286	0.5022	1.036	1.6564	2.4546
33kV CB (Air Insulated Busbars)(OD) (GM)	0.1386	0.7007	1.3381	1.9213	2.6418
33kV CB (Gas Insulated Busbars)(ID)(GM)	0.1286	0.5022	1.036	1.6564	2.4546
33kV CB (Gas Insulated Busbars)(OD)(GM)	0.1386	0.7007	1.3381	1.9213	2.6418
33kV Switch (GM)	0.1316	0.5822	1.1775	1.7857	2.5456
33kV RMU	0.1316	0.5822	1.1775	1.7857	2.5456
66kV CB (Air Insulated Busbars)(ID) (GM)	0.3182	1.6088	3.0722	4.4112	6.0655
66kV CB (Air Insulated Busbars)(OD) (GM)	0.3021	1.3367	2.7034	4.0999	5.8446
66kV CB (Gas Insulated Busbars)(ID)(GM)	0.3021	1.3367	2.7034	4.0999	5.8446
66kV CB (Gas Insulated Busbars)(OD)(GM)	0.3182	1.6088	3.0722	4.4112	6.0655
33kV Transformer (GM)	0.2617	1.0224	2.1093	3.3722	4.9972
66kV Transformer (GM)	0.2617	1.0224	2.1093	3.3722	4.9972
132kV OHL (Tower Line) Conductor	0.0472	0.2089	0.4224	0.6406	0.9132
132kV Tower	0.3118	0.8434	1.8135	3.0114	5.1857
132kV Fittings	0.0801	0.4733	0.7308	0.955	1.2238
132kV UG Cable (Non Pressurised)	0.3764	0.8315	1.8232	3.0116	5.4204
132kV UG Cable (Oil)	11.9823	34.808	74.2907	123.5784	206.6918
132kV UG Cable (Gas)	25.7656	81.3867	172.1507	286.792	460.7901
132kV Sub Cable	0.1164	0.4549	0.9385	1.5004	2.2234
132kV CB (Air Insulated Busbars)(ID) (GM)	0.2485	0.9706	2.0024	3.2014	4.744
132kV CB (Air Insulated Busbars)(OD) (GM)	0.2678	1.3543	2.5861	3.7133	5.1059
132kV CB (Gas Insulated Busbars)(ID) (GM)	0.2485	0.9706	2.0024	3.2014	4.744
132kV CB (Gas Insulated Busbars)(OD) (GM)	0.2543	1.1252	2.2757	3.4513	4.92
132kV Transformer (GM)	0.2617	1.0224	2.1093	3.3722	4.9972

TABLE 241: RISK MATRIX WEIGHTINGS - RISK INDEX (LONG TERM RISK)

Asset Register Category	Criticality Index	Risk Index or Monetised Long Term Risk Weighting (£ at 12/13 prices) For Each Health Index Band					
	Band	HI1	HI2	HI3	HI4	HI5	
LV Poles	C1	257	1136	2297	3484	4967	
	C2	367	1623	3282	4977	7096	
	C3	550	2434	4923	7466	10643	
	C4	917	4057	8205	12444	17739	

Asset Register Category	Criticality Index				Ferm Risk W lealth Index	eighting (£ at Band
	Band	HI1	HI2	HI3	HI4	HI5
LV Circuit Breaker	C1	342	1338	2761	4413	6540
	C2	489	1911	3944	6304	9343
	C3	733	2866	5916	9456	14015
	C4	1221	4777	9860	15760	23358
LV Pillar (ID)	C1	364	1423	2935	4694	6955
	C2	520	2033	4193	6705	9935
	C3	780	3049	6290	10058	14903
	C4	1300	5082	10484	16763	24838
LV Pillar (OD at Substation)	C1	372	1453	2998	4793	7102
	C2	531	2076	4283	6848	10146
	C3	797	3114	6424	10272	15219
LV Pillar (OD not at a Substation)	C4	1328	5190	10706	17119	25366
EV Fillar (OD flot at a Substation)	C1 C2	338	1321	2724	4356	6455
	C2 C3	483 724	1887 2830	3892 5838	6223 9335	9221 13831
	C4	1207	4717	9730	15558	23052
LV Board (WM)	C1	597	2331	4808	7686	11390
	C2	853	3329	6869	10980	16272
	C3	1279	4994	10303	16470	24407
	C4	2132	8323	17171	27450	40679
LV UGB	C1	434	1919	3883	5888	8394
	C2	619	2742	5547	8412	11991
	C3	929	4113	8320	12617	17987
	C4	1548	6855	13867	21029	29978
LV Board (X-type Network) (WM)	C1	630	2458	5071	8107	12014
	C2	899	3512	7245	11581	17163
	C3	1349	5268	10867	17372	25745
	C4	2249	8779	18112	28954	42908
6.6/11kV Poles	C1	408	1806	3652	5539	7896
	C2	583	2579	5217	7912	11280
	C3	875	3869	7826	11869	16919
	C4	1458	6449	13043	19781	28199
20kV Poles	C1	446	1971	3987	6047	8620
	C2	637	2816	5696	8638	12314
	C3	955	4224	8544	12957	18471
	C4	1592	7040	14239	21595	30785
HV Sub Cable	C1	25676	100344	207019	330965	490448
	C2	36680	143349	295741	472808	700640
	C3	55020	215023	443612	709211	1050960
6.6/11kV CB (GM) Primary	C4	91700	358371	739353	1182019	1751600
	C1 C2	1337	5915 8450	11961 17087	18137	25856
	C2 C3	<u>1910</u> 2865	8450 12675	25630	25910 38866	36937 55405
	C3	4776	21125	42717	64776	92342
6.6/11kV CB (GM) Secondary	C1	577	2555	5169	7838	11174
0.0/TRV CD (GW) Secondary	C2	824	3651	7385	11198	15963
	C3	1237	5476	11077	16797	23944
	C4	2061	9126	18461	27995	39907
6.6/11kV Switch (GM)	C1	538	2383	4820	7310	10420
. /	C2	769	3404	6886	10442	14886
	C3	1153	5106	10330	15664	22329
	C4	1922	8511	17216	26106	37215
6.6/11kV RMU	C1	643	2849	5763	8739	12458
	C2	919	4070	8233	12484	17797
	C3	1379	6105	12349	18727	26695
	C4	2298	10175	20582	31211	44492

Asset Register Category	Criticality Index	x 12/13 prices) For Each Health Index Band				
	Band	HI1	HI2	HI3	HI4	HI5
6.6/11kV X-type RMU	C1	723	3203	6480	9826	14007
	C2	1033	4576	9256	14036	20009
	C3	1550	6864	13885	21055	30014
	C4	2584	11440	23141	35091	50024
20kV CB (GM) Primary	C1	1372	6067	12268	18603	26519
	C2	1959	8667	17525	26575	37884
	C3	2939	13000	26288	39863	56826
	C4	4898	21667	43813	66438	94710
20kV CB (GM) Secondary	C1	583	2581	5222	7918	11288
	C2	833	3688	7460	11312	16126
	C3	1249	5532	11190	16968	24189
	C4	2082	9219	18650	28280	40315
20kV Switch (GM)	C1	557	2468	4993	7571	10793
	C2	796	3526	7133	10816	15419
	C3	1195	5289	10699	16225	23129
	C4	1991	8815	17832	27041	38548
20kV RMU	C1	648	2868	5801	8797	12540
	C2	925	4097	8287	12566	17914
	C3	1388	6145	12431	18850	26871
	C4	2313	10242	20718	31416	44785
6.6/11kV Transformer (GM)	C1	592	2310	4767	7621	11292
	C2	846	3300	6810	10888	16132
	C3	1268	4950	10215	16331	24198
	C4	2114	8249	17025	27219	40330
20kV Transformer (GM)	C1	626	2442	5039	8056	11937
	C2	894	3488	7198	11509	17052
	C3	1341	5232	10798	17263	25579
	C4	2235	8720	17996	28772	42631
33kV Pole	C1	281	1241	2510	3807	5427
	C2	401	1773	3586	5438	7753
	C3	601	2659	5379	8158	11629
	C4	1002	4432	8965	13596	19382
66kV Pole	C1	412	1823	3687	5591	7971
	C2	589	2604	5267	7988	11387
	C3	883	3906	7900	11982	17080
	C4	1472	6510	13167	19969	28467
33kV OHL (Tower Line) Conductor	C1	573	2535	5126	7774	11083
	C2	818	3622	7323	11106	15832
	C3	1227	5433	10985	16659	23748
	C4	2046	9054	18308	27765	39580
33kV Tower	C1	1438	3891	8366	13892	23922
	C2	2055	5558	11951	19845	34174
	C3	3082	8337	17926	29768	51261
	C4	5137	13895	29877	49613	85434
33kV Fittings	C1	102	605	935	1221	1565
	C2	146	865	1335	1745	2236
	C3	220	1297	2003	2617	3354
	C4	366	2162	3338	4362	5590
66kV OHL (Tower Line) Conductor	C1	769	3404	6884	10440	14882
	C2	1099	4863	9834	14914	21260
	C3	1648	7295	14751	22371	31890
	C4	2747	12159	24585	37285	53151
66kV Tower	C1	2707	7321	15742	26141	45016
	C2	3867	10459	22489	37344	64308
	C3	5800	15689	33734	56017	96462
	C4	9667	26148	56223	93361	160770

Asset Register Category	Criticality Index	Risk Index or Monetised Long Term Risk Weighting (£ a 12/13 prices) For Each Health Index Band				
	Band	HI1	HI2	HI3	HI4	HI5
66kV Fittings	C1	118	697	1076	1406	1802
	C2	168	995	1537	2008	2574
	C3	253	1493	2305	3013	3860
	C4	421	2488	3842	5021	6434
33kV UG Cable (Non Pressurised)	C1	7874	17395	38142	63003	113396
	C2	11249	24850	54488	90005	161994
	C3	16874	37275	81732	135007	242991
	C4	28123	62126	136220	225012	404985
33kV UG Cable (Oil)	C1	42030	122096	260589	433476	725013
	C2	60043	174423	372271	619251	1035733
	C3	90065	261634	558406	928877	1553599
	C4	150108	436057	930677	1548128	2589332
33kV UG Cable (Gas)	C1	6132	19370	40972	68256	109668
	C2	8760	27671	58531	97509	156669
	C3	13140	41507	87797	146264	235003
	C4	21901	69179	146328	243773	391672
66kV UG Cable (Non Pressurised)	C1	15750	34793	76289	126015	226807
	C2	22500	49704	108984	180021	324010
	C3	33750	74556	163475	270032	486015
	C4	56249	124259	272459	450054	810025
66kV UG Cable (Oil)	C1	42123	122364	261162	434428	726604
	C2	60175	174806	373088	620611	1038006
	C3	90263	262209	559632	930916	1557009
	C4	150438	437014	932720	1551527	2595016
66kV UG Cable (Gas)	C1	9703	30650	64832	108006	173534
	C2	13862	43786	92617	154294	247905
	C3	20793	65679	138926	231441	371858
	C4	34655	109465	231543	385735	619763
EHV Sub Cable	C1	19836	77519	159929	255681	378887
	C2	28337	110741	228469	365259	541267
	C3	42505	166112	342704	547888	811900
	C4	70841	276853	571173	913147	1353167
33kV CB (Air Insulated Busbars)(ID) (GM)	C1	5383	21020	43363	69330	102739
	C2	7690	30029	61947	99043	146770
	C3	11534	45043	92920	148564	220156
	C4	19224	75071	154866	247607	366926
33kV CB (Air Insulated Busbars)(OD)	C1	4910	24825	47408	68070	93597
(GM)	C2	7015	35465	67725	97243	133709
	C3	10522	53197	101588	145864	200564
	C4	17537	88661	169313	243107	334274
33kV CB (Gas Insulated Busbars)(ID)(GM)	C1	5942	23206	47872	76540	113423
	C2	8489	33151	68388	109342	162033
	C3	12734	49727	102583	164013	243050
	C4	21223	82878	170971	273356	405083
33kV CB (Gas Insulated	C1	5243	26505	50616	72676	99930
Busbars)(OD)(GM)	C2	7490	37864	72308	103823	142758
	C3	11235	56797	108462	155735	214136
	C4	18724	94661	180771	259558	356894
33kV Switch (GM)	C1	4079	18044	36494	55345	78896
	C2	5827	25777	52135	79064	112709
	C3	8740	38666	78202	118595	169063
	C4	14567	64444	130337	197659	281772
33kV RMU	C1	5236	23164	46849	71047	101281
	C2	7480	33091	66927	101496	144687
	C3	11220	49637	100390	152243	217030
	C4	18700	82728	167317	253739	361717

Asset Register Category	Criticality Index	Risk Index or Monetised Long Term Risk Weighting (£ a 12/13 prices) For Each Health Index Band				
	Band	HI1	HI2	HI3	HI4	HI5
66kV CB (Air Insulated Busbars)(ID) (GM)	C1	15991	80852	154396	221688	304827
	C2	22845	115502	220566	316698	435467
	C3	34267	173253	330848	475047	653200
	C4	57112	288755	551414	791744	1088666
66kV CB (Air Insulated Busbars)(OD)	C1	15699	69465	140488	213061	303728
(GM)	C2	22428	99235	200698	304372	433897
	C3	33641	148853	301047	456559	650846
	C4	56069	248088	501744	760931	1084743
66kV CB (Gas Insulated Busbars)(ID)(GM)	C1	19274	85283	172479	261577	372890
	C2	27535	121832	246399	373681	532700
	C3	41302	182748	369598	560522	799050
	C4	68837	304580	615997	934203	1331751
66kV CB (Gas Insulated	C1	17634	89158	170258	244464	336144
Busbars)(OD)(GM)	C2	25192	127369	243226	349235	480206
	C3	37788	191053	364839	523852	720308
	C4	62980	318422	608065	873087	1200514
33kV Transformer (GM)	C1	24192	94512	194986	311731	461948
	C2	34560	135017	278552	445329	659925
	C3	51840	202526	417828	667994	989888
	C4	86400	337543	696380	1113323	1649813
66kV Transformer (GM)	C1	31373	122569	252870	404271	599081
	C2	44819	175098	361243	577530	855830
	C3	67229	262647	541864	866295	1283746
	C4	112048	437746	903107	1443824	2139576
132kV OHL (Tower Line) Conductor	C1	792	3503	7083	10742	15314
	C2	1131	5004	10119	15346	21877
	C3	1696	7507	15179	23019	32815
	C4	2827	12511	25298	38366	54692
132kV Tower	C1	3519	9519	20467	33987	58526
	C2	5027	13598	29239	48553	83609
	C3	7541	20397	43859	72829	125414
	C4	12568	33995	73098	121382	209023
132kV Fittings	C1	164	971	1499	1959	2510
	C2	235	1387	2141	2798	3586
	C3	352	2080	3212	4197	5379
	C4	587	3467	5353	6995	8964
132kV UG Cable (Non Pressurised)	C1	28070	62010	135967	224593	404231
	C2	40101	88586	194238	320847	577473
	C3	60151	132878	291357	481270	866210
	C4	100251	221464	485596	802117	1443683
132kV UG Cable (Oil)	C1	52951	153820	328298	546105	913392
	C2	75644	219743	468997	780150	1304845
	C3	113466	329614	703496	1170226	1957268
	C4	189111	549357	1172493	1950376	3262113
132kV UG Cable (Gas)	C1	15926	50305	106406	177266	284814
	C2	22751	71864	152009	253237	406878
	C3	34127	107797	228014	379856	610316
	C4	56878	179661	380023	633093	1017194
132kV Sub Cable	C1	34034	133008	274407	438700	650097
	C2	48620	190011	392010	626714	928710
	C3	72930	285016	588014	940071	1393065
	C4	121550	475027	980024	1566785	2321774
132kV CB (Air Insulated Busbars)(ID)	C1	41120	160607	331342	529743	785001
(GM)	C2	58743	229439	473345	756776	1121429
	C3	88114	344159	710018	1135164	1682144
	C4	146857	573598	1183363	1891939	2803574

Asset Register Category	Criticality Index	Risk Index or Monetised Long Term Risk Weighting (£ at 12/13 prices) For Each Health Index Band					
	Band	HI1	HI2	HI3	HI4	HI5	
132kV CB (Air Insulated Busbars)(OD)	C1	19660	99422	189850	272600	374833	
(GM)	C2	28085	142031	271215	389429	535476	
	C3	42128	213046	406822	584143	803214	
	C4	70213	355077	678037	973572	1338690	
132kV CB (Gas Insulated Busbars)(ID) (GM)	C1	53833	210262	433782	693523	1027698	
	C2	76904	300374	619689	990747	1468140	
	C3	115356	450562	929533	1486120	2202210	
	C4	192260	750936	1549222	2476867	3670350	
132kV CB (Gas Insulated Busbars)(OD)	C1	38037	168301	340387	516227	735907	
(GM)	C2	54338	240430	486267	737467	1051296	
	C3	81507	360646	729401	1106200	1576944	
	C4	135846	601076	1215668	1843667	2628239	
132kV Transformer (GM)	C1	86466	337802	696914	1114177	1651078	
	C2	123523	482574	995592	1591682	2358683	
	C3	185284	723861	1493388	2387523	3538025	
	C4	308807	1206435	2488979	3979204	5896708	

APPENDIX F WORKED EXAMPLES

F.1 Probability of Failure (PoF)

The described methodology is capable of representing a very wide range of asset conditions and situations. In order to provide the reader with some clarity, this section works through a selection of typical scenarios with references to the relevant section of the methodology. The examples begin with the simplest scenario first. In order to avoid repetition, each subsequent example will focus on the key differences with the previous examples. The scenarios presented here are not exhaustive but provide an illustration of how the methodology works.

Example 1: A new LV pole with no associated condition information

The asset used in this example is a one-year-old steel LV pole, 5km from the coast, at an altitude of 100m, in corrosion zone 3. No condition information is available for this asset. For this asset, the following calculation steps enable the PoF (and associated Heath Index Band) to be determined:

Normal Expected Life (see Section 6.1.3)

1. The Normal Expected Life of a steel pole is given by Table 20 "Normal Expected Life" as **50** years

Expected Life (see Section 6.1.4)

- 2. The Distance from Coast Factor is given by Table 22 "Distance from Coast Factor Lookup Table" as **1.2**
- 3. The Altitude Factor is given by Table 23 "Altitude Factor Lookup Table" as 1
- The Corrosion Category Factor is given by Table 24 "Corrosion Category Factor Lookup Table" as 1
- 5. The Location Factor is determined in accordance with EQ. 13 as

ocation Factor

= MAX(Distance From Coast Factor, Altitude Factor, Corrosion Factor)+ (((COUNT of factors greater than 1) - 1) × INC)

giving MAX (1.2, 1, 1) + 0 = 1.2

- 6. The Duty Factor is given by Table 8 "Duty Factor Methodology" as 1
- 7. The Expected Life is given by EQ. 4 as

 $Expected Life = \frac{Normal Expected Life}{(Duty Factor \times Location Factor)}$

giving 50 / (1.2 x 1) = 41.66667 years

- <u>β1 Initial Ageing Rate (see Section 6.1.5)</u>
- 8. The Initial Ageing Rate is given by EQ. 5 as


```
giving ln(5.5 / 0.5) / 41.66667 = 0.05755
```

Initial Health Score (see Section 6.1.6)

9. The Initial Health Score is given by EQ. 6 as

Initial Health Score = $H_{new} \times e^{(\beta_1 \times age)}$

giving 0.5 x e^(0.05755 x 1) = 0.52962

Current Health Score (see Section 6.1.7)

- 10. The Observed Condition Modifiers are given by Table 108 to Table 111. As no condition information is available, the default values apply, namely Condition Input Factor = 1, Condition Input Cap = 10, Condition Input Collar = 0.5
- 11. The Measured Condition Modifier is given by Table 192 "Measured Condition Input LV Pole: Pole Decay / Deterioration". As no condition information is available, the default values apply, namely Condition Input Factor = 1, Condition Input Cap = 10, Condition Input Collar = 0.5
- 12. The Health Score Modifier is calculated using the MMI technique described in Section 6.7.2. In this case, all input factors are the same, resulting in a Health Score Modifier that consists of Health Score Factor = 1, Health Score Cap = 10, Health Score Collar = 0.5
- 13. The Current Health Score is given by EQ. 7 as


Current Health Score = Initial Health Score \times Health Score Factor \times Reliability Factor

giving **0.52962 x 1 x 1 = 0.52962**. The test conditions in EQ. 8 and EQ. 9 confirm that this value is within the cap and collar range (0.5 to 10), so the Current Health Score is confirmed as **0.52962**

14. The corresponding Health Index Band is given by Table 5 "Health Index Banding Criteria" as **HI1**

<u>β2 Forecast Ageing Rate (see Section 6.1.8)</u>

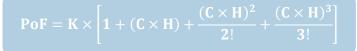
15. The Forecast Ageing Rate is given by EQ. 10 as

giving **In(0.52962/ 0.5) / 1 = 0.05755**

16. The test condition in EQ. 11 confirms that this result for β_2 is within the cap of 2 x β_1

Ageing Reduction Factor (see Section 6.1.9)

17. The Current Health Score is less than 2, so Table 216 "Ageing Reduction Factor" confirms that the Ageing Reduction Factor is **1**


Future Health Score – Deterioration (see Section 6.1.10)

18. The Future Health Score is given by EQ. 12

For a five-year forecast period, t is equal to 5, so the Future Health Score is therefore $0.52962 \times e^{(0.05755 / 1) \times 5)} = 0.70620$

- 19. The future Health Index Band is given by Table 5 "Health Index Banding Criteria" as **HI1**
- 20. The value of K is given by Table 21 "PoF Curve Parameters" as 0.00029
- 21. The Current Health Score is <=4, so the PoF if given by setting H=4 in EQ. 3

This gives a PoF value of 0.00029 x (1 + (1.087 x 4) + (1.087 x 4)² / 2 + (1.087 x 4)³ / 6) = 0.00827

22. The Future Health Score is <=4, so the future PoF is again given by EQ. 3 as 0.00029 x (1 + (1.087 x 4) + (1.087 x 4)^2 / 2 + (1.087 x 4)^3 / 6) = 0.00827

In summary, this asset would be banded into the most reliable Health Index Band (HI1) and would remain there for the 5-year period under review.

Example 2: An ageing LV pole

The asset used in this example is a 50-year-old steel LV pole in the same location as the previous example i.e. located outdoors, 5km from the coast, at an altitude of 100m, in corrosion zone 3. No condition information is available for this asset.

Steps 1 to 8 are exactly the same as in the previous example.

Initial Health Score (see Section 6.1.6)

9. The Initial Health Score is given by EQ. 6 as

Initial Health Score = $H_{new} \times e^{(\beta_1 \times age)}$

giving **0.5 x e^(0.05755 x 50) = 8.88490.** However, the result is capped to the maximum permissible value of **5.5**

<u>Current Health Score (see Section 6.1.7)</u> Steps 10 to 12 are exactly the same as in the previous example. 13. The Current Health Score is given by EQ. 7 as

Current Health Score = Initial Health Score × Health Score Factor × Reliability Factor

giving $5.5 \times 1 \times 1 = 5.5$. The test conditions in EQ. 8 and EQ. 9 confirm that this value is within the cap and collar range (0.5 to 10), so the Current Health Score is confirmed as 5.5

14. The corresponding Health Index Band is given by Table 5 "Health Index Banding Criteria" as **HI3**

<u>β2 Forecast Ageing Rate (see Section 6.1.8)</u>

15. The Forecast Ageing Rate is given by EQ. 10 as

giving In(5.5 / 0.5) / 50 = 0.04796

16. The test condition in EQ. 11 confirms that this result for β_2 is within the cap of 2 x β_1

Ageing Reduction Factor (see Section 6.1.9)

17. The Current Health Score is 5.5, so Table 216 "Ageing Reduction Factor" increases the Ageing Reduction Factor to **1.5**

Future Health Score – Deterioration (see Section 6.1.10)

18. The Future Health Score is given by EQ. 12

Future Health Score = Current Health Score $\times e^{((\beta_2/r) \times t)}$

For a five-year forecast period, t is equal to 5, so the Future Health Score is therefore $5.5 \times e^{(0.04796 / 1.5) \times 5)} = 6.45340$

- 19. The future Health Index Band is given by Table 5 "Health Index Banding Criteria" as HI3
- 20. The value of K is given by Table 21 "PoF Curve Parameters" as 0.00029
- 21. The Current Health Score is >4, so the current PoF from EQ. 3 where H = Health Score

is 0.00029 x (1 + (1.087 x 5.5) + (1.087 x 5.5)² / 2 + (1.087 x 5.5)³ / 6) = 0.01753 -

approximately twice that of the new pole in the first example

22. Future Health Score is >4, so the future PoF is similarly given by EQ. 3 as **0.00029 x (1 + (1.087 x 6.45340) + (1.087 x 6.45340)^2 / 2 + (1.087 x 6.45340)^3 / 6) = 0.02614** – approximately three times that of the new pole in the first example

In summary, this asset would be banded into the middle Health Index Band (HI3) and would still be in the same band (HI3) by the end of the 5-year period under review, when it would be approximately three times more likely to fail than a new pole.

Example 3: A mid-life LV pole with evidence of degraded condition

The asset used in this example is a 25-year-old steel LV pole in the same location as the previous example i.e. located outdoors, 5km from the coast, at an altitude of 100m, in corrosion zone 3. The pole has been inspected and was found to have significant loss of residual strength, although within an acceptable level.

Steps 1 to 8 are exactly the same as in the previous example.

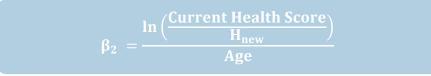
Initial Health Score (see Section 6.1.6)

9. The Initial Health Score is given by EQ. 6 as

Initial Health Score = $H_{new} \times e^{(\beta_1 \times age)}$

giving 0.5 x e^(0.05755 x 25) = 2.10768

Current Health Score (see Section 6.1.7)

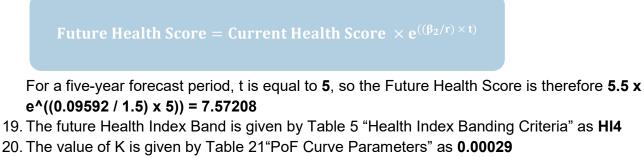

Step 10 is the same as in the previous example.

- 11. The Measured Condition Modifier is given by Table 192 "Measured Condition Input LV Pole: Pole Decay / Deterioration". The pole has significant loss of residual strength, although within an acceptable level and so would be classified as having "High" deterioration. Therefore, Condition Input Factor =1.4, Condition Input Cap = 10, Condition Input Collar = 5.5
- 12. The Health Score Modifier is calculated using the MMI technique described in Section 6.7.2. In this case, the result is driven by the highest Condition Input Factor, resulting in a Health Score Modifier that consists of Health Score Factor = 1.4, Health Score Cap = 10, Health Score Collar = 5.5
- 13. The Current Health Score is given by EQ. 7 as

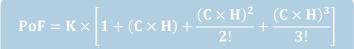
Current Health Score = Initial Health Score × Health Score Factor × Reliability Factor

giving **2.10768 x 1.4 x 1 = 2.95076**. However, the test conditions in EQ. 8 and EQ. 9 show that this is outside the cap and collar range (5.5 to 10), so the Current Health Score is collared to **5.5**

- 14. The corresponding Health Index Band is given by Table 5 "Health Index Banding Criteria" as **HI3**
- <u>β2 Forecast Ageing Rate (see Section 6.1.8)</u>
- 15. The Forecast Ageing Rate is given by EQ. 10 as


giving **In(5.5 / 0.5) / 25 = 0.09592**.

16. The test condition in EQ. 11 confirms that this result for β_2 is within the cap of 2 x β_1


Ageing Reduction Factor (see Section 6.1.9)

17. The Current Health Score is 5.5, so Table 216 "Ageing Reduction Factor" increases the Ageing Reduction Factor to **1.5**

<u>Future Health Score – Deterioration (see Section 6.1.10)</u> 18. The Future Health Score is given by EQ. 12

21. The Current Health Score is >4, so the current PoF from EQ. 3 where H = Health Score

is 0.00029 x (1 + (1.087 x 5.5) + (1.087 x 5.5)² / 2 + (1.087 x 5.5)³ / 6) = 0.01753 - approximately twice that of the new pole in the first example

22. Future Health Score is >4, so the future PoF is similarly given by EQ. 3 as 0.00029 x (1 + (1.087 x 7.57208) + (1.087 x 7.57208)^2 / 2 + (1.087 x 7.57208)^3 / 6) = 0.03945 – approximately five times that of the new pole in the first example

In summary, this asset would be banded into the middle Health Index Band (HI3) and would progress to HI4 by the end of the 5-year period under review, when it would be approximately five times more likely to fail than a new pole.

Example 4: An EHV transformer in good condition

The asset used in this example is a 40 year old 33kV transformer, located outdoors, 5km from the coast, at an altitude of 100m, in corrosion zone 3. It is 50% loaded and averages 5 taps per day. Condition information is available, showing that the main transformer tank has low levels of DGA. This example illustrates how the health scores of two asset sub-components are combined to give an overall health score.

Normal Expected Life (see Section 6.1.3)

1. The Normal Expected Life of a pre-1980 33kV transformer and tapchanger is given by Table 20 "Normal Expected Life" as **60** years

Expected Life (see Section 6.1.4)

- 2. The Distance from Coast Factor is given by Table 22 "Distance from Coast Factor Lookup Table" as **1.1**
- 3. The Altitude Factor is given by Table 23 "Altitude Factor Lookup Table" as **0.9**
- The Corrosion Category Factor is given by Table 24 "Corrosion Category Factor Lookup Table" as 1
- 5. The Location Factor is determined in accordance with EQ. 13 as

Location Factor

= MAX(Distance From Coast Factor, Altitude Factor, Corrosion Factor) + $(((COUNT of factors greater than 1) - 1) \times INC)$

giving MAX (1.1, 0.9, 1) + 0 = 1.1

- 6. The Transformer Duty Factor is given by Table 34 "Duty Factor Lookup Tables Grid & Primary Transformers" as **1**
- 7. The Tapchanger Duty Factor is given by Table 34 "Duty Factor Lookup Tables Grid & Primary Transformers" as **0.9**
- 8. The Transformer Expected Life is given by EQ. 4 as

Expected Life = $\frac{\text{Normal Expected Life}}{(\text{Duty Factor} \times \text{Location Factor})}$

giving **60** / **(1.1 x 1) = 54.54545** years

9. The Tapchanger Expected Life is given similarly by EQ. 4 as 60 / (1.1 x 0.9) = 60.60606 years

β1 Initial Ageing Rate (see Section 6.1.5)

10. The Transformer Initial Ageing Rate is given by EQ. 5 as

giving **In(5.5 / 0.5) / 54.55 = 0.04396**

- 11. The Tapchanger Initial Ageing Rate is given similarly by EQ. 5 as In(5.5 / 0.5) / 60.61 = 0.03957
- Initial Health Score (see Section 6.1.6) 12. The Transformer Initial Health Score is given by EQ. 6 as

Initial Health Score = $H_{new} \times e^{(\beta_1 \times age)}$

giving 0.5 x e^(0.04396 x 40) = 2.90174

13. The Tapchanger Initial Health Score is given similarly by EQ. 6 as **0.5 x e^(0.03957 x 40) = 2.43382**

Current Health Score (see Section 6.1.7)

- 14. The Health Score Modifier is calculated using the MMI technique described in Section 6.8. In this case, all input factors are neutral, resulting in a Health Score Modifier that consists of Health Score Factor = 1, Health Score Cap = 10, Health Score Collar = 0.5 for both the Transformer and the Tapchanger
- 15. The Transformer Current Health Score is given by EQ. 7 as

Current Health Score = Initial Health Score × Health Score Factor × Reliability Factor

giving **2.90174 x 1 = 2.90174**. The test conditions in EQ. 8 and EQ. 9 confirm that this value is within the cap and collar range (0.5 to 10), so the Transformer Current Health Score is confirmed as **2.90174**

- 16. The Tapchanger Current Health Score is similarly given by EQ. 7 as **2.43382 x 1 = 2.43382** EQ. 8 and EQ. 9 confirm that this value is within the cap and collar range (0.5 to 10), so the Tapchanger Current Health Score is confirmed as **2.43382**
- 17. The combined Current Health Score is derived according to Section 6.2 as **MAX(2.90174, 2.43382) = 2.90174**
- 18. The corresponding Health Index Band is given by Table 5 as HI1

The derivation of the PoF and Future Health Score then follows the same pattern as described in Steps 15 to 22 in the first example. In this case, the transformer will remain in Health Index Band HI1 through to the end of the 5-year period under review.

Example 5: An EHV transformer with rising DGA levels

The asset used in this example is the same 40 year old 33kV transformer from example 4, which is located outdoors, 5km from the coast, at an altitude of 100m, in corrosion zone 3. It is 50% loaded and averages 5 taps per day. Additional condition information is available, showing that the DGA in the main transformer has risen from 10ppm (Hydrogen, Methane, Ethylene, Ethane) and 5ppm (Acetylene) to 50ppm (Hydrogen), 25ppm (Methane, Ethylene, Ethane) and 10ppm (Acetylene). In addition, Oil Moisture is measured at 15ppm, Acidity at 0.2 mg KOH/g and oil breakdown at 25kV. This is indicative of degradation and accelerated ageing, placing the transformer at increased risk of failure.

This example illustrates how the poor condition of a sub-component affects the overall health score.

Initial Health Scores are derived using Steps 1 to 13 from the previous example:

- The Transformer Initial Health Score is 2.90174
- The Tapchanger Initial Health Score is **2.43382**

Health Score Modifier (see Section 6.8)

The Health Score Modifier for a 33kV transformers is derived in the same generic way as described in Section 6.7 except for the following differences:

- There are three additional Condition Modifiers to the model: The Oil Test Modifier, the DGA Test Modifier and the FFA Test Modifier.
- The parameters used to combine the Factors associated with these Condition Modifiers in order to derive the Health Score Factor are as shown in Table 10.

14. The Oil Test modifier is determined from EQ. 22

Oil Condition Score = 80 × Moisture Score + 125 × Acidity Score + 80 × Breakdown Strength Score

Using the inputs determined from Table 203 - Table 205 as follows:

Oil Condition Score = $(80 \times 2) + (125 \times 4) + (80 \times 10) = 1,460$ giving an Oil Test Factor of **1.2** and an Oil Test Collar of **5.5** in accordance with Table 206 and Table 207 respectively.

15. The DGA Test modifier is determined from EQ. 23, EQ. 24 and EQ. 25

DGA Score = 50 × Hydrogen Score + 30 × Methane Score + 30 × Ethylene Score + 30 × Ethane Score + 120 × Acetylene Score

```
DGA Test Collar = DGA Score \div 220
% Change = \frac{DGA Score_{latest} - DGA Score_{previous}}{DGA Score_{previous}} \times 100\%
```

Using the inputs determined from Table 208 - Table 212:

- Current DGA Condition Score = (50 x 4) + (30 x 4) + (30 x 4) + (30 x 4) + (120 x 4) = 1,040
- Previous DGA Condition Score = (50 x 0) + (30 x 0) + (30 x 0) + (30 x 0) + (120 x 2) = 240
- % change = ((1,040 240) / 240 x 100) = 333% giving a DGA Test Factor of 1.50 in accordance with Table 213 and Table 214.
- The DGA Test Collar = 1,040 / 220 = 4.727273
- 16. The FFA Test modifier is determined from Table 215 to give an FFA Test Factor of 1.0
- 17. The Health Score Factor (pre collar) can therefore be determined using the MMI technique as follows: 1.5 + ((1.2-1.0) / 1.5) = 1.6333

Current Health Score (see Section 6.1.7)

- 18. The Health Score Modifier is calculated using the MMI technique described in Section 6.8.
- 19. The Transformer Current Health Score is given by EQ. 7 as

Current Health Score = Initial Health Score × Health Score Factor × Reliability Factor

giving **2.90 x 1.633 = 4.73950**

- 20. The test conditions in EQ. 8 and EQ. 9 confirm that this value is outside the cap and collar range (5.5 to 10) due to the DGA Test Collar and so the Transformer Current Health Score becomes **5.5**.
- 21. The Tapchanger Current Health Score is similarly given by EQ. 7 as **2.43 x 1 = 2.43**. EQ. 8 and EQ. 9 confirm that this value is within the cap and collar range (0.5 to 10), so the Tapchanger Current Health Score is confirmed as **2.43**
- 22. The combined Current Health Score is derived according to Section 6.2 as **MAX(5.5, 2.43) = 5.5**
- 23. The corresponding Health Index Band is given by Table 5 as HI3

The derivation of the PoF and Future Health Score then follows the same pattern as described in Steps 15-22 in the first example

F.2 Consequences of Failure

The described methodology is capable of representing a very wide range of asset criticalities. In order to provide the reader with some clarity, this section works through a selection of typical scenarios. The scenarios presented here are not exhaustive, but provide an illustration of how the methodology works.

Example 1: A distribution RMU with a typical number of connected customers

The asset used in this example is an 11kV oil-filled RMU supplying 800 customers with normal access arrangements. The safety location and type risks have been assessed as "Medium" in accordance with ESQCR. It is moderately close to a water course. For this asset, the following calculation steps enable the Consequences of Failure to be determined:

Financial Consequences (see Section 7.3)

- 1. Table 16 "Reference Costs of Failure" gives the Reference Financial Cost of Failure as £8,190
- 2. Table 221 "Access Factor: Switchgear & Transformer Assets" gives the Access Factor as 1
- 3. Applying EQ. 28 and EQ. 29

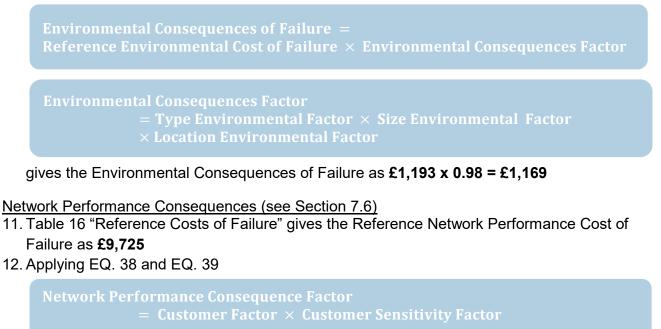
Financial Consequences of Failure = Reference Financial Cost of Failure × Financial Consequences Factor

Financial Consequences Factor = **Type Financial Factor** × **Access Financial Factor**

gives the Financial Consequences of Failure as £8,190 x 1 = £8,190

Safety Consequences (see Section 7.4)

- 4. Table 16 "Reference Costs of Failure" gives the Reference Safety Cost of Failure as £4,262
- 5. Table 225 "Safety Consequence Factor Switchgear, Transformers & Overhead Lines" gives the Safety Consequence Factor as **1**
- 6. Applying EQ. 31


Safety Consequences of Failure = Reference Safety Cost of Failure × Safety Consequences Factor × Safety Risk Reduction Factor

gives the Safety Consequences of Failure as £4,262 x 1 = £4,262

Environmental Consequences (see Section 7.5)

- Table 16 "Reference Costs of Failure" gives the Reference Environmental Cost of Failure as £1,193
- 8. Table 229 "Type Environmental Factor" gives the Type Environmental Factor as 0.98
- 9. Table 231 "Location Environmental Factor" gives a Proximity Factor of **1** and a Bunding Factor of **1**. The Location Environmental Factor is therefore equal to **1**

10. Applying EQ. 33 and EQ. 34

Customer Factor = $\frac{No. of Customers}{Rotation}$

gives the Network Performance Consequence Factor as **800** / **1,000 x 1 = 0.8** 13. Applying EQ. 37

Network Performance Cost of Failure = Reference Network Performance Cost of Failure × Network Performance Consequence Factor

gives the Network Performance Cost of Failure as £9,725 x 0.8 = £7,780

Consequences of Failure (see Section 7.1)

14. Figure 20 "Consequences of Failure" shows that the total Consequences of Failure is the sum of the above, giving £8,190 + £4,262 + £1,169 + £7,780 = £21,401

As described in Section 5.3 the classification of this total CoF into Criticality Bands C1, C2, C3 and C4 is a based on the relative magnitude of the total CoF of the asset (in this instance £21,401) compared to the Reference Costs of Failure shown in Table 16(in this instance £23,207) and the Criticality Index banding criteria shown in Table 6. Therefore, in this example, **£21,401 / 23,207 = 92%** giving a Criticality Index band of C2.

Example 2: A distribution RMU with a single commercial customer

The asset used in this example is an 11kV oil-filled RMU supplying a single commercial customer 600kVA of load and normal access arrangements. The safety location and type risks have been assessed as "Medium" in accordance with ESQCR.. It is not close to a water course. For this asset, the following calculation steps enable the Consequences of Failure to be determined:

Steps 1 to 10 are exactly the same as in the previous example.

Network Performance Consequences (See Section 7.6)

- 11. Applying Table 18 "Customer Number Adjustment for LV & HV Assets with High Demand Customers" gives the multiplier on the number of customers as **250**
- 12. Applying EQ. 38 and EQ. 39

Network Performance Consequence Factor = Customer Factor × Customer Sensitivity Factor

Customer Factor = $\frac{\text{No. of Customers}}{\text{Reference No. of Customers}}$

gives the Network Performance Consequence Factor as **250** / **1,000 x 1 = 0.25** 13. Applying EQ. 37

Network Performance Cost of Failure = Reference Network Performance Cost of Failure × Network Performance Consequence Factor

gives the Network Performance Cost of Failure as £9,725 x 0.25 = £2,431

Consequences of Failure (see Section 7.1)

14. Figure 20 "Consequences of Failure" shows that the total Consequences of Failure is the sum of the above, giving £8,190 + £4,262 + £1,169 + £2,431 = £16,052

As described in Section 5.3 the classification of this total CoF into Criticality Bands C1, C2, C3 and C4 is a based on the relative magnitude of the total CoF of the asset (in this instance £16,052) compared to the Reference Costs of Failure shown in Table 16(in this instance £23,207) and the Criticality Index banding criteria shown in Table 6. Therefore, in this example, **£16,052 / 23,207 = 70%** giving a Criticality Index band of C1.

Example 3: An EHV transformer with typical loading

The asset used in this example is a 33/11kV, 24MVA-rated transformer with normal access arrangements. The safety location has not been assessed. It is bunded and moderately close to a water course. It has a maximum demand of 10MVA and is in an "n-1" (or Secure) configuration. For this asset, the following calculation steps enable the Consequences of Failure to be determined:

Financial Consequences (see Section 7.3)

- 1. Table 16 "Reference Costs of Failure" gives the Reference Financial Cost of Failure as £73,000
- 2. Table 219 "Type Financial Factors" gives the Type Financial Factor as 1.1
- 3. Table 221 "Access Factor: Switchgear & Transformer Assets" gives the Access Factor as 1
- 4. Applying EQ. 28 and EQ. 29

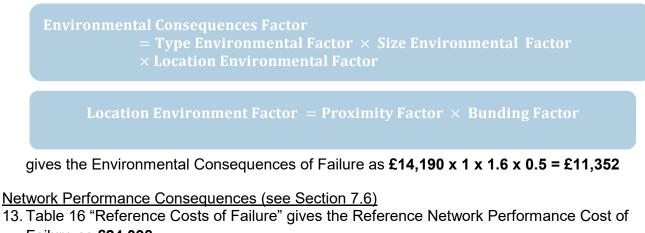
Financial Consequences of Failure = Reference Financial Cost of Failure \times Financial Consequences Factor

Financial Consequences Factor = Type Financial Factor \times Access Financial Factor

gives the Financial Consequences of Failure as £73,000 x 1.1 x 1 = £80,300

Safety Consequences (see Section 7.4)

- 5. Table 16 "Reference Costs of Failure" gives the Reference Safety Cost of Failure as £20,771
- 6. Table 225 "Safety Consequence Factor Switchgear, Transformers & Overhead Lines" gives the Safety Consequence Factor as **1**
- 7. Applying EQ. 31


Safety Consequences of Failure = Reference Safety Cost of Failure × Safety Consequences Factor × Safety Risk Reduction Factor

gives the Safety Consequences of Failure as £20,771x 1 = £20,771

Environmental Consequences (see Section 7.5)

- 8. Table 16 "Reference Costs of Failure" gives the Reference Environmental Cost of Failure as **£14,190**
- 9. Table 229 "Type Environmental Factor" gives the Type Environmental Factor as 1
- 10. Table 230 "Size Environmental Factor" gives the Size Environmental Factor as 1.6
- 11. Table 231 "Location Environmental Factor" gives a Proximity Factor of **1** and a Bunding Factor as **0.5**. The Location Environmental Factor is therefore equal to **1**
- 12. Applying EQ. 33, EQ. 34 and EQ. 35

Environmental Consequences of Failure = Reference Environmental Cost of Failure × Environmental Consequences Factor

Failure as **£24,098**

14. Applying EQ. 42

Load Factor =

Actual Load Supplied By Asset

Maximum Demand Used To Derive Reference Network Performance Cost of Failure

gives the Load Factor as **10** / **15 = 0.66** 15. Applying EQ. 41

> Network Performance Consequences of Failure = Reference Network Performance Cost of Failure × Load Factor × Network Type Factor

gives the Network Performance Consequence of Failure as £24,098 x 0.66 x 1 = £16,066

Consequences of Failure (see Section 7.1)

16. Figure 20 "Consequences of Failure" shows that the total Consequences of Failure is the sum of the above, giving £80,300 + £20,771 + £11,352 + £16,066 = £128,489

As described in Section 5.3 the classification of this total CoF into Criticality Bands C1, C2, C3 and C4 is a based on the relative magnitude of the total CoF of the asset (in this instance £128,489) compared to the Reference Costs of Failure shown in Table 16(in this instance £132,059) and the Criticality Index banding criteria shown in Table 6. Therefore, in this example, **£128,489 / 132,059 = 97%** giving a Criticality Index band of C2.